Die Entstehung von troposphärischem Ozon

Das troposphärische Ozon entstammt zwei Hauptquellen: der photochemischen Entstehung vor Ort und dem Transport aus der Stratosphäre.

Die Entstehung von troposphärischem Ozon

Während in der Stratosphäre Ozon aus der Spaltung von Sauerstoffatomen durch UV-Licht entsteht, ist die Sonneneinstrahlung in der unteren Atmosphäre dafür nicht mehr intensiv genug. Hier entsteht Ozon hauptsächlich über die Spaltung von Stickoxiden (NOx = NO + NO2). Bei den dadurch ausgelösten photochemischen Reaktionen spielen zusätzlich flüchtige organische Verbindungen (VOC - Volatile Organic Compounds) und Kohlenstoffmonoxid (CO) als weitere Ozon-Vorläuferstoffe eine Rolle.

Stickstoffdioxid (NO2) wird in einem auslösenden Schritt durch Sonnenlicht (in chemischen Formeln als hv geschrieben) in Stickstoffmonoxid (NO) und ein Sauerstoffatom gespalten. Letzteres reagiert mit Luftsauerstoff zu Ozon.

NO2 + hv -> NO + O*

O* + O2 -> O3

Das hierbei entstehende NO reagiert aber wieder mit O3 zu Stickstoffdioxid und Sauerstoff, so dass sich weitgehend ein Gleichgewicht zwischen Ozonbildung und -abbau einstellt.

NO + O3 -> NO2 + O2

In diesen Reaktionsprozess können nun allerdings organische Luftverunreinigungen wie flüchtige organische Verbindungen und Kohlenmonoxid eingreifen und das natürliche Gleichgewicht von Entstehung und Vernichtung von Ozon empfindlich stören. Sie greifen nicht direkt in den Ozon-Zyklus ein, sondern werden zunächst in der Luft durch Oxidation abgebaut. Die dabei entstehenden Abbauprodukte fördern die Umwandlung von NO zu NO2. Damit steht weniger NO zum Abbau und mehr NO2 zur Bildung von Ozon zur Verfügung und die Rückreaktion des Ozons mit Stickstoffmonoxid wird geschwächt.

Die Emission der Ozon-Vorläufergase wird seit Beginn der Industrialisierung stark durch menschliche Aktivitäten beeinflusst.1 So sind NOx und CO in der Troposphäre heute hauptsächlich anthropogenen Ursprungs. Stickoxide sind zu einem hohen Anteil ein Produkt der Industrialisierung und werden zumeist als NO emittiert, das sich aber in wenigen Minuten durch photochemische Reaktionen in NO2 verwandelt. Quellen sind hauptsächlich die Verbrennung fossiler Energien (33 Tg/a), die Biomassenverbrennung (7,1 Tg/a) und die Aktivität von Bodenmikroorganismen. Bei der Nutzung fossiler Energien hat der Straßenverkehr mit 40% eine dominierende Stellung, mit den stärksten Emissionen in Nordamerika, Westeuropa und Japan. Diese NOx-Entstehung ist auf die mittleren und höheren Breiten der Nordhalbkugel konzentriert, während in den Tropen und auf der Südhalbkugel Stickoxide vor allem aus der Biomassenverbrennung entstehen. Bei der natürlichen Entstehung spielen die Bodenemission und vor allem die Entstehung durch Blitze, die die Stickstoffmoleküle der Luft zu spalten vermögen, die wichtigste Rolle. Insgesamt übertreffen die anthropogenen Emissionen die natürlichen um das 3-4-Fache. Sie stammen zu 80% aus Nordamerika, Europa und Asien, wobei sie in Nordamerika und Europa zurückgehen, in Ostasen mit 4% pro Jahr deutlich zunehmen. Beispielhaft für die Entwicklung in den westlichen Industriestaaten ist die deutliche Abnahme der NOx-Emissionen in Deutschland (Abb. 2). Während sie sich in der Zeit von 1955 bis 1990 etwa verdreifacht haben, gingen sie seit Ende der 1980er Jahre um mehr als die Hälfte zurück. Der Grund sind Maßnahmen wie die europaweite Einführung des Katalysators und der Einbau von Filtern in Großfeuerungsanlagen.2 Die wichtigste Senke für Stickoxide ist die Oxidation von NO2 durch Reaktion mit dem OH-Radikal.

Entstehung von troposphärischem Ozon

Abb. 1: Die Entstehung der wichtigsten Ozonvorläufergase Stickoxide (NOx), Kohlenmonoxid (CO) und flüchtigen organischen Verbindungen (VOC) sowie von troposphärischem Ozon.Rot: anthropopgene, lila: natürliche Prozesse.

Auch das atmosphärische Kohlenmonoxid stammt zu mehr als der Hälfte aus anthropogenen Quellen wie Entwaldung, Waldbränden, Verbrennung von Abfällen, Holzverbrennung und Nutzung fossiler Energien, die insgesamt 1350 Tg/a emittieren, wovon 207 Tg/a aus dem Straßenverkehr3 stammen. Demgegenüber spielen natürliche Emissionen mit ca. 200 Tg/a nur eine geringe Rolle. Außerdem wird CO mit etwa 1230 Tg/a durch Oxidation von Methan und anderen Gasen in der Troposphäre gebildet, wovon etwa die Hälfte auf anthropogene Emission von Methan und andere menschlich verursachte Emissionen zurückgeführt werden kann. Die CO-Konzentration hat besonders in der 2. Hälfte des 20. Jahrhunderts mit der Industrialisierung und Bevölkerungsentwicklung stark zugenommen und ist auf der Nordhalbkugel doppelt so hoch wie auf der Südhalbkugel. Bis in die späten 1980er Jahre nahm die CO-Konzentration langsam zu, danach zeigte sich jedoch eine leichte Abnahme, möglicherweise aufgrund der Katalysator-Nutzung im Straßenverkehr. 1991 bis 1997 wurde eine Abnahme um 2%/a gemessen, 1998 wieder eine Zunahme. Mit großer Unsicherheit wird der globale Gehalt auf 360 Tg geschätzt, wobei der Anteil der Nordhalbkugel doppelt so hoch ist wie der der Südhalbkugel.4

Neben Stickoxiden und Kohlenmonoxid sind die flüchtigen organischen Verbindungen (VOC), von denen es in der Atmosphäre mehr als 1000 Verbindungen gibt, die dritten wichtigen Vorläufersubstanzen für die Entstehung von Ozon. Der mit Abstand größte Teil der VOC entstammt natürlichen Quellen. So werden die am meisten vorkommenden VOC Isoprene und Terpene mit 220 bzw. 127 Tg/a nach IPCC-Schätzungen von der Vegetation emittiert, während nur ca. 190 Tg/a der VOC insgesamt aus anthropogenen Quellen stammen.5 Die durch menschliche Aktivitäten verursachte Emission von VOC ist im letzten Jahrhundert stark angestiegen. Den größten Anteil daran hat der Verkehr, daneben die Ausdünstung von vielen bauchemischen Produkten wie z. B. Anstrichstoffen, Klebstoffen oder Dichtungsmassen. Wegen der kurzen Lebensdauer von wenigen Tagen bis Wochen finden sich VOC vor allem in der Nähe der Emissionsgebiete. Bei den natürlichen Emissionen sind die Tropen die Hauptgebiete. Die anthropogenen Emissionen finden sich dagegen hauptsächlich in den dicht besiedelten und stark industrialisierten Regionen der Nordhemisphäre. Auch bei den anthropogenen VOC haben eindämmende Maßnahmen dazu geführt, dass die Emissionen in den westlichen Industriestaaten seit Ende der 1980er Jahre erheblich zurückgegangen sind (vgl. Abb. 2).

Emissionen der Ozon-Vorläufergase NOx und VOC in Deutschland 1970-1998

Abb. 2: Langzeitverlauf der Emissionen der Ozon-Vorläufergase NOx und VOC in Deutschland 1970-19986

Entsprechend den Quellgebieten der Vorläufergase sind die Hauptgebiete der anthropogenen O3-Produktion die industrialisierten Regionen der mittleren Breiten und die tropischen Gebiete mit starker Biomassenverbrennung. In der regionalen Verteilung besteht allerdings ein großer Unterschied in der Verteilung der Vorläufergase und des Ozons selbst zwischen den Werten am Boden und in größerer Höhe. Während die Bodenwerte in den Entstehungsgebieten und den benachbarten Leezonen am höchsten sind und dann schnell abfallen, ist die Konzentration in größerer Höhe rund um den Globus verhältnismäßig homogen. Der Grund liegt in der längeren Lebensdauer der Spurengase in der oberen Troposphäre und in dem relativ ungehinderten atmosphärischen Transport. So beträgt die chemische Lebensdauer von NOx in Bodennähe einen Tag, in 8 km Höhe dagegen mehrere Wochen. Beim Ozon selbst sind die Unterschiede noch größer.

Durch die längere Lebensdauer können die Vorläufergase und das Ozon selbst in einigen km Höhe über weite Strecken durch Luftströmungen transportiert werden, so von den USA über den Nordatlantik, von Ostasien bis über den östlichen Nordpazifik, von tropischen Waldbrandgebieten in Südamerika und Afrika bis weit auf den Südatlantik. Satellitendaten zeigen im späten Frühjahr bis Sommer (Mai-Juli) eine von den Industrieregionen im östlichen China und Japan ausströmende Ozon-Fahne, die quer über den pazifischen Ozean bis zur Westküste Nordamerikas reicht. Ähnliche Beobachtungen wurden zwischen der Ostküste Nordamerikas über den Atlantik bis nach Westeuropa gemacht. In beiden Fällen lagen die Ozonwerte mit 50-60 DU auf dem Niveau der industrialisierten Regionen selbst, obwohl die Ozeane relativ wenig verschmutzt sind.7 Entsprechend sind auch die Werte für die gesamte troposphärische Ozonsäule deutlich gleichmäßiger um den Globus verteilt als für das bodennahe Ozon. Ein bezeichnendes Beispiel für den Höhenunterschied in der Ozonverteilung ist die Zunahme der troposphärischen Ozonmenge durch den Straßenverkehr im Hochsommer, wie sie die Modellsimulation in Abb. 4 zeigt. Erhöhungen der Ozonmenge um 10-15% durch die Emission von Vorläufersubstanzen infole des Straßenverkehrs sind in Bodennähe im wesentlichen auf Nordamerika, Mittel- und Westeuropa und Japan beschränkt, dh. auf die Hauptemissionsgebiete der Vorläuferstoffe selbst. In 9 km Höhe sind die maximalen Zunahmen der Ozonmenge mit 5-10% zwar etwas geringer, diese sind jedoch in den höheren Breiten der Nordhalbkugel rund um den Globus nahezu gleichmäßig verteilt und überdecken z.B. den gesamten Nordatlantik.

Ozon durch den Straßenverkehr in Bodennähe und in 9 km Höhe 

Abb. 3: Durch den Straßenverkehr verursachte prozentuale Differenz in der Ozonkonzentration in Bodennähe und bei 300 hPa (ca. 9 km Höhe)8

Die zweite wichtige Quelle für troposphärisches Ozon ist der Fluss aus der Stratosphäre, der auf 475 Tg/a geschätzt wird.9 Der Anteil aus dieser Quelle ist relativ groß über den Ozeanen, da die Produktion vor Ort hier relativ gering ist, und ist z.T. für die relativ gleichmäßige Verteilung von troposphärischem Ozon über die nördlichen mittleren Breiten verantwortlich. Über Land dominiert eher die Oberflächenemission der Ozon-Vorläufergase als wichtigste Quelle. Dennoch sind gerade die großen Kontinente der Nordhalbkugel mit ihren Gebirgen dafür verantwortlich, dass der Ozonfluss aus der Stratosphäre hier fast doppelt so groß ist wie auf der Südhalbkugel, weil sie durch die Verstärkung der planetaren Wellen Tropopausenbrüche verursachen können und dadurch für einen stärkeren Massenaustausch zwischen Stratosphäre und Troposphäre sorgen. Ein zweites Austauschmaximum findet sich in den Tropen, wo die hochreichenden Gewitterwolken die Tropopause durchstoßen.

Die gesamte Menge des troposphärischen Ozons ist schwer abzuschätzen. Sie wird aus Satellitendaten nach Abzug der viel größeren stratosphärischen Ozonmenge abgeleitet und gegenwärtig auf 370 Tg geschätzt, was einer durchschnittlichen globalen Säulendichte von 34 DU10 bzw. einer durchschnittlichen Konzentration von 50 ppb entspricht.11

Ozon aus der Stratosphäre und aus Oberflächenemission
Tabelle 1: Anteile an der Verteilung von troposphärischem Ozon am Beispiel einiger Regionen12

Anmerkungen:
1. zum Folgenden vgl. IPCC (2001): Climate Change 2001: The Scientific Basis. Contribution of the Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Houghton, J.T. et al., eds), Cambridge and New York, 4.2.3.3 and Table 4.8
2. Claude, H., W. Fricke und S. Beilke (2001): Wie entwickelt sich das bodennahe und das troposphärische Ozon?, Ozonbulletin des Deutschen Wetterdienstes, Nr. 82
3. Granier, C., and G.P. Brasseur (2003): The impact of road traffic on global tropospheric ozone, Geophysical Research Letters 30, doi: 10.1029/2002GL015972
4. IPCC (2001): Climate Change 2001: The Scientific Basis. Contribution of the Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Houghton, J.T. et al., eds), Cambridge and New York, 4.2.3.1
5. IPCC (2001): Climate Change 2001: The Scientific Basis. Contribution of the Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Houghton, J.T. et al., eds), Cambridge and New York, 4.2.3.2 and Table 4.7
6. verändert nach Claude, H., W. Fricke und S. Beilke (2001): Wie entwickelt sich das bodennahe und das troposphärische Ozon?, Ozonbulletin des Deutschen Wetterdienstes, Nr. 82
7. Chandra, S., J.R. Ziemke, X. Tie, G. Brasseur (2004): Elevated ozone in the troposphere over the Atlantic and Pacific oceans in the Northern Hemisphere, Geophysical Research Letter 31, L23102 10.1029/2004GL020821
8. Granier, C., and G.P. Brasseur (2003): The impact of road traffic on global tropospheric ozone, Geophysical Research Letters 30, doi: 10.1029/2002GL015972
9. IPCC (2001): Climate Change 2001: The Scientific Basis. Contribution of the Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Houghton, J.T. et al., eds), Cambridge and New York, 4.2.4
10. Ozon-Menge als die vorhande Anzahl von Molekülen Ozon über einem Quadratzentimeter Grundfläche; 1 DU = 2,7 x 1016 O3-Moleküle/cm2
11. IPCC (2001): Climate Change 2001: The Scientific Basis. Contribution of the Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Houghton, J.T. et al., eds), Cambridge and New York, 4.2.4
12. Daten nach Chandra, S., J.R. Ziemke, X. Tie, G. Brasseur (2004): Elevated ozone in the troposphere over the Atlantic and Pacific oceans in the Northern Hemisphere, Geophysical Research Letter 31, L23102 10.1029/2004GL020821

Autor: