Konzentrationsveränderung von Ozon

Die mittlere globale Konzentration von Ozon hat seit Beginn der Industrialisierung zugenommen und wird auch im 21. Jahrhundert weiter zunehmen. Ozon hat damit deutlich zur anthropogenen Treibhauswirkung beigetragen und wird das auch weiterhin tun, regional allerdings sehr unterschiedlich.

Konzentrationsveränderung von Ozon

Die wenigen Beobachtungswerte und Modellanalysen legen eine Zunahme des globalen troposphärischen Ozons seit vorindustriellen Zeiten bis heute von 25 DU auf 34 DU nahe.1 Vereinzelte europäischen Messungen, die bis ins späte 19. Jahrhundert zurückreichen, lassen vermuten, dass sich der Ozongehalt in Bodennähe im 20. Jahrhundert hier sogar verdreifacht hat. Auch Modellrechnungen ergeben aufgrund der zunehmenden Emissionen der Vorläufergase eine Verdreifachung des Ozongehalts in Europa, Nordamerika und Südostasien.2

Veränderung der Ozonkonzentration seit der vorindustriellen Ära

Abb. 1: Veränderung der Ozonkonzentration seit der vorindustriellen Ära nach Modellberechnungen. Eine starke Konzentrationszunahme zeigen die stark industrialisierten Gebiete in Nordamerika und Ostasien, vor allem in den südlichen mittleren Breiten, da hier die Sonneneinstrahlung für eine hohe Ozonbildungsrate hoch genug ist.3

Neuere Datenreihen zeigen global eine Zunahme während der starken Nachkriegsindustrialisierung in den 1960er und 1970er Jahren, danach aber keinen klaren Trend mehr. Hier haben offenbar die Anstrengungen zur Kontrolle der Emission von Ozon-Vorläufergasen, insbesondere von Stickoxiden, in Nordamerika und Europa das Wachstum der Ozon-Konzentration stark gebremst. Besonders deutlich zeigt sich dieser Trend in den älteren Industrieländern selbst, wie die Messungen am Hohenpeissenberg in Süddeutschland belegen (Abb. 2). Die Ursachen der hier dargestellten Veränderung der Ozon-Konzentration in der freien Atmosphäre liegen allerdings nicht nur in den regionalen Verhältnissen, da hier auch globale Emissionsänderungen sowie Änderungen der atmosphärischen Zirkulation eine Rolle spielen können.

Ozonkonzentration über dem Hohenpeißenberg in ca. 3000 m Höhe
Abb. 2:
Ozonkonzentration über Hohenpeißenberg in ca. 3000 m Höhe. 1975-1985 ist ein Anstieg von 40 auf 55 ppb zu erkennen, danach ein leichter Rückgang.4

In jüngster Zeit hat die schnelle Industrialisierung im östlichen Asien wieder zu deutlich gesteigerten Emissionen von Ozon-Vorläufergasen geführt. Aufgrund dessen, dass Ozon eine atmosphärische Lebensdauer von mehreren Wochen besitzt, d.h. der zirkumhemisphärischen Transportzeit nahe kommt, haben die kombinierten Emissionen von Nordamerika und Eurasien die troposphärische Hintergrundkonzentration von Ozon auf der Nordhalbkugel wieder zunehmen lassen. Auf der Südhalbkugel ist die Ozonkonzentration durch Biomassenverbrennung und die Nutzung fossiler Brennstoffe ebenfalls deutlich angestiegen. Schiffmessungen auf dem Atlantik, die ein gutes Bild der von regionalen Besonderheiten unabhängigen Hintergrundkonzentration liefern, haben zwischen 1977 und 2002 in den mittleren Breiten der Nordhemisphäre nur eine sehr geringfügige Zunahme, in den subtropischen und tropischen Breiten beider Hemisphären aber deutliche Zuwächse der Ozonkonzentration von z.T. über 50% ergeben.5

Modellprognosen für das 21. Jarhundert gehen davon aus, dass das troposphärische Ozon bis 2030 um ca. 5 ppb und bis 2100 um bis zu 20 ppb ansteigen könnte, in einigen Regionen wie vor allem in Süd- und Ostasien sogar um mehr als 45 ppb.6 Diesen Modellrechnungen liegen Annahmen über eine durchschnittliche Verdreifachung der Stickstoffemissionen von 2000 bis 2100 zugrunde. Dabei geht man von einer Verdopplung der N-Emissionen in Europa und Nordamerika aus, aber von einer Steigerung um das 5-8fache in Indien, Südostasien, Afrika und Südamerika. Auch die Zunahme der Emission von Kohlenmonoxid wird mit einem Faktor von durchschnittlich 2,4 angenommen, wobei Europa und Amerika bei 2 bzw. 1,6, die anderen oben genannten Regionen bei 4-6,5 liegen könnten. Nicht berücksichtigt sind in diesen Rechnungen die Folgen des Klimawandel auf das Ökosystem und seine Emissionen der Ozon-Vorläufergase, weshalb sie mit großen Unsicherheiten behaftet sind. Auch andere Prognosen (bis 2025 und 2050) gehen davon aus, dass aufgrund der starken NOx-Emissionen in den asiatischen Industrieregionen die Hintergrundkonzentration von O3 auf der gesamten nördlichen Hemisphäre weiter ansteigen und selbst in wenig belasteten ozeanischen Regionen der Südhalbkugel noch um 10-20% zunehmen wird.7

Ozonveränderung und Strahlungsantrieb seit der Industrialisierung
Abb. 3:
Veränderung der troposphärischen Ozon-Menge (Jahresmittel) des dadurch verursachten Strahlungsantriebs nach geographischer Breite seit Beginn der Industrialisierung in DU. Die stärkste Veränderung gab es in den strahlungsreichen und stark industrialisierten mittleren Breiten der Nordhemisphäre. Atmosphärischer Transport sorgte auch für eine relativ starke Zunahme in höheren Breiten. Der Strahlungsantrieb in höheren Breiten wird durch die Absorption reflektierter Strahlung verstärkt.8

Anmerkungen:
1. IPCC (2001): Climate Change 2001: The Scientific Basis. Contribution of the Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Houghton, J.T. et al., eds), Cambridge and New York, Table 4.9
2. Hauglustaine, D.A., and G.P. Brasseur (2001): Evolution of Tropospheric Ozone under Anthropogenic Activities and Associated Radiative Forcing of Climate, Journal of Geophysical Research 106, 32337-32360
3. verändert nach Lelieveld, J., F.J. Dentener (2000): What controls tropospheric ozone?, Journal of Geophysical Research 105 , 3531-3551
4. verändert nach Claude, H., W. Fricke und S. Beilke (2001): Wie entwickelt sich das bodennahe und das troposphärische Ozon?, Ozonbulletin des Deutschen Wetterdienstes, Nr. 82
5. Lelieveld, J., J. van Aardenne, H. Fischer, M. de Reus, J. Williams, and P. Winkler (2004): Increasing Ozone over the Atlantic Ocean, Science 304, 1483-1487
6. Prather, M. et al. (2003): Fresh air in the 21st century?, Geophys. Res. Lett. 30, 10.1029/2002GL016285
7. Lelieveld, J., F.J. Dentener (2000): What controls tropospheric ozone?, Journal of Geophysical Research 105 , 3531-3551; Hauglustaine, D.A., and G.P. Brasseur (2001): Evolution of Tropospheric Ozone under Anthropogenic Activities and Associated Radiative Forcing of Climate, Journal of Geophysical Research 106, 32337-32360
8. Hauglustaine, D.A., and G.P. Brasseur (2001): Evolution of Tropospheric Ozone under Anthropogenic Activities and Associated Radiative Forcing of Climate, Journal of Geophysical Research 106, 32337-32360