Starniederschläge und Hochwasser in Südasien

Pakistan, Indien und Bangladesch sind immer wieder von Hochwasserereignissen heimgesucht worden, deren verheerende Auswirkungen in den Medien weltweit thematisiert werden. Eine der schwersten Überschwemmungen der Region ereignete sich im Sommer 2010 in Pakistan, als schätzungsweise 20 % des Landes unter Wasser gesetzt wurde.

Starniederschläge und Hochwasser in Südasien

Die großen Flussbecken

Die großen Flussbecken von Indus, Ganges und Brahmaputra mit ihren fruchtbaren Schwemmlandböden und ausgedehnten Bewässerungssystemen gehören zu den am dichtesten besiedelten Regionen der Welt. Im Indus-Becken leben etwa 200 Mio. Menschen, 72 % davon in Pakistan und 35 % in Indien. Das gesamte Einzugsgebiet des Indus umfasst 1,14 Mio. km2, wovon über die Hälfte zu Pakistan gehört, ein Drittel zu Indien und der Rest zu Afghanistan und China.1 Der mittlere Teil des Indus-Beckens besitzt mit 144.900 ha Land eines der größten Bewässerungsnetzwerke der Welt, das in Pakistan und Indien Grundlage einer intensiven Landwirtschaft ist.2

Hochwasser Pakistan 2010 in der Provinz Sindh
Abb. 1: Zerstörungen durch Überschwemmungen in der Provinz Sindh, Pakistan. Foto: U.S. Marines 22.10.2010B1

Das Ganges-Brahmaputra-Meghna-Becken erstreckt sich über 1,7 Mio. km2, wovon fast Zweidrittel in Indien liegen.  In dem Flusssystem leben insgesamt 630 Mio. Menschen, über 400 Mio. davon in Indien. Die Bevölkerungsdichte in den tiefer liegenden Becken der großen Ströme ist sehr hoch und beträgt in Indien 432 und in Bangladesch sogar 1013 Einwohner pro km2 (Deutschland: 231).3 Die Hälfte der Fläche des Ganges-Beckens ist bewirtschaftet, ein Drittel davon wird bewässert. Der Abfluss des Ganges wird hauptsächlich durch Niederschläge gespeist, nur 10 % durch Schmelzwasser von Gletschern und Schneeflächen im Himalaya. Der mittlere Niederschlag liegt bei 600-800 mm im Jahr und fällt hauptsächlich während der Monsunzeit.4

Ganges Brahmaputra Flusssystem
Abb. 2: Das Ganges-Brahmaputra-Meghna-FlusssystemB2

Das Klima der Region

Im Indus-Einzugsgebiet fallen 50 % der Niederschläge in der Monsunzeit, 40 % im Winter und Frühling. Die feuchten Luftmassen stammen hauptsächlich vom Golf von Bengalen, daneben von Westwinden und gelegentlichen Zyklonen vom Arabischen Meer.2 Die mittleren Niederschläge reichen von 100-500 mm im Jahr in den Tiefländern und bis 2000 mm an den Hängen des Himalaya im Nordwesten. Sie zeigen über die letzten Jahrzehnte keinen klaren Trend bzw. widersprüchliche Untersuchungsergebnisse.5

Mittlerer Jahresniederschlag im Indus-Becken in mm 1950-2000
Abb. 3: Mittlerer Jahresniederschlag im Indus-Becken in mm 1950-2000B3

Das Wasserregime von Indus, Ganges und Brahmaputra und von deren Oberläufen ist bestimmt durch den südasiatischen und vom Golf von Bengalen in den Indischen Subkontinent eindringenden Sommermonsun. Er beeinflusst in erster Linie den östlichen Teil des Himalayas, wo die meisten Niederschläge in der Zeit von Juni bis September fallen. Nach Westen hin gewinnen die Westwinde zunehmend an Bedeutung. So verteilen sich im Hindukusch und Karakorum die Niederschläge auf Tiefdrucksysteme vom Westen im Winter und auf Monsunniederschläge im Sommer. Im gesamten Einzugsgebiete der drei großen Ströme fallen die geringsten Niederschläge im Hochland von Tibet mit 100 mm im Jahr und die höchsten mit ca. 5500 mm/Jahr am Südrand des oberen Brahmaputra-Beckens. Ein Teil des Zuflusses besteht aus Schmelzwasser der Eis- und Schneereserven im Oberlauf der Flusssysteme.6

Die Hauptquelle des Wassers im Ganges-Becken ist der Monsun-Regen im Jun bis September, dem 80 % des jährlichen Niederschlags und ebenfalls 80 % des jährlichen Abflusses entstammen.7 Am stärksten unter dem Einfluss der Monsun-Niederschläge steht mit einem mittleren Jahreswert von 2300 mm im gesamten Becken und mehr als 6000 mm an den Südhängen des Himalayas das Brahmaputra-Becken. Über die letzten 50-100 Jahre gab es auch hier keine signifikanten Veränderungen.5

Änderung des Extremniederschlags in Indien 1979-2015
Abb. 4: Änderung der Anzahl von extremen Niederschlagsereignissen in % von 1979 bis 2015B4

Anders sieht die Entwicklung bei den extremen Niederschlägen aus. Nach Beobachtungsdaten und Modellsimulationen hat die Anzahl extremer Niederschlagsereignisse in den letzten Jahrzehnten über dem größten Teil Indiens zugenommen, in einigen Gebieten sogar um bis zu 30 %. Allerdings sind die Extremniederschläge in der Gangesebene, Nordostindien und Jammu (nordwestliches Indien) zwischen 20 und 30 % zurückgegangen. Der Rückgang in der Gangesebene beruht auf geringeren Monsunniederschlägen durch eine Erwärmung des Indischen Ozeans und Abkühlung über dem Land durch atmosphärische Aerosole. Dadurch verringert sich der Temperaturgegensatz zwischen Land und Ozean und damit schwächt sich der Sommermonsun ab. Modellsimulationen zeigen, dass die beobachtete Anzahl der extremen Niederschlagsereignisse 1959-2005 unter den tatsächlichen Bedingungen über dem größten Teil Indiens höher ist als im selben Zeitraum ohne anthropogene Erwärmung. Das zeigt nach Mukherjee (2017) einen deutlichen Einfluss der anthropogenen Erwärmung auf die extremen Niederschläge in Indien.8

Hochwasserkatastrophen

Pakistan, Indien und Bangladesch sind immer wieder von Hochwasserereignissen betroffen, deren verheerende Auswirkungen in den Medien weltweit thematisiert werden. Eine der schwersten Überschwemmungen der Region ereignete sich im Sommer 2010 in Pakistan, als schätzungsweise 20 % des Landes unter Wasser gesetzt wurde und fast 2000 Menschen den Fluten zum Opfer fielen.9 Auch in Indien kam es in den letzten Jahren zu großen Hochwasserereignissen. So bewirkten außerordentlich starke Regenfälle im Winter 2015 im südwestindischen Staat Tamil Nadu gewaltige Überschwemmungen mit über 400 Toten.10

Hochwasserkatastrophen in Pakistan

Überschwemmungen sind die verheerendsten Naturkatastrophen in Pakistan. Von allen durch Naturkatastrophen betroffenen Menschen sind 90 % Opfer von Überschwemmungen.2 In den hochgelegenen nordwestlichen Grenzregionen Pakistans sowie in Kaschmir und Balutschistan kommt es häufig zu Sturzfluten, die sehr plötzlich zu starken Zerstörungen von Brücken und Siedlungen sowie zu Todesopfern führen können. Sie sind nicht selten mit starker Erosion und Hangrutschungen verbunden.2 An einigen Flussläufen fehlen Dämme und andere Schutzbauten zur Kontrolle der Wasserniveaus völlig, so am Chenab, einem 1200 km langen Nebenfluss des Indus, der weitgehend durch Bergland fließt.

Hochwassergebiete in Pakistan 2010
Abb. 5: Hochwassergebiete in Pakistan zwischen dem 28. Juli und 16. September 2010 B5

Am Indus selbst fallen die Hochwasser je nach Terrain verschieden aus. Am Oberlauf liegt das Flussbett unterhalb der umgebenden Landschaft, so dass nach einem Hochwasser das Wasser wieder direkt in das Flussbett zurückfließen kann. Am mittleren und unteren Indus hat sich über die Jahrtausende das Niveau des Flussbetts durch Sedimentation langsam angehoben. Der Indus zählt zu den sedimentreichsten Flüssen der Welt.1 Das hat einerseits mit den hohen Erosionsraten durch das starke Gefälle im Himalaya zu tun, ist aber andererseits auch durch menschliche Eingriffe in das Flusssystem bedingt. So verstärken die Abholzungen im Oberlauf die Erosion und die Sedimentfracht. Und am unteren Indus sorgen Dämme dafür, dass der Fluss die Sedimente nicht über die umliegenden Flächen verteilen kann, sondern damit sein Bett zunehmend erhöht. Wenn es dann doch zu einem Dammbruch kommt, werden umso größere Gebiete des stark bevölkerten und wirtschaftlich intensiv genutzten Landes überschwemmt. Das hochliegende Flussbett, Dämme, Straßen und Eisenbahnlinien verhindern, dass die Wassermassen wieder in das alte Flussbett zurückfließen können und sich neue Wege suchen müssen.

Monsunregen sind die Hauptquelle für Hochwasser in Pakistan. Wenn im Sommer Schmelzwasser und Monsunniederschläge zusammen kommen, sind die stärksten Überschwemmungen sowohl in den Bergregionen wie in der tiefer liegenden ausgedehnten Indus-Ebene zu erwarten.1 In den hoch gelegenen Einzugsgebieten des Indus und seiner Zuflüsse trägt die Schneeschmelze besonders stark zu Hochwasserereignissen bei. An den trockenen Küsten Pakistans kommt es zu Überflutungen dagegen durch niederschlagsreiche tropische Zyklonen, die über dem Arabischen Meer entstehen. Sie kommen zwar selten vor, können aber erhebliche Zerstörungen anrichten.2

Durch Schutzmaßnahmen zeigt sich zwischen 1950 und 2009 ein abnehmender Trend der Todesfälle und zerstörten Siedlungen durch Überschwemmungen, der aber durch die Katastrophe von 2010 unterbrochen wurde.2

Im Sommer 2010 hat das Hochwasser in Pakistan, das schätzungsweise 20 % des Landes unter Wasser setzte, fast 2000 Tote verursacht, insgesamt waren 20 Millionen Menschen davon betroffen, und der Schaden wird auf 40 Milliarden US$ geschätzt.11

Die Hochwasserkatastrophe 2010 in Pakistan wurde hauptsächlich durch extrem hohe Niederschläge verursacht.12 Besonders stark waren die Niederschläge in den vier Tagen zwischen dem 27. und und 30. Juli. An zwei Messstationen fielen in diesen vier Tagen über 400 mm Niederschlag13, z.T. lagen die Niederschläge sogar an einem einzige Tag schon bei 280 mm. Das entspricht ungefähr der Menge, die in Deutschland im Mittel über einen ganzen Sommer fällt. Über den ganzen Monat Juli fielen an etlichen Orten über 500 mm Niederschlag, was drei- bis zehnmal soviel ist wie im langjährigen Julimittel.12

Unmittelbare Ursache der starken Niederschläge war der Indische Sommermonsun. Der Monsun wird angetrieben durch den Temperatur- und Druckgegensatz zwischen Land und Meer, der je nach Jahreszeit wechselt. Im Winter herrschen tiefere Temperaturen und höherer Druck über dem Land, im Sommer über dem Meer. Der Monsun weht daher im Winter vom Land aufs Meer, im Sommer vom Meer aufs Land. Während der Wintermonsun trocken ist, bringt der Sommermonsun starke Niederschläge über die an den Indischen Ozean angrenzenden Landmassen. Die meisten Niederschläge fallen durch eine Monsunströmung, die über den Golf von Bengalen und Bangladesch bis in den Nordwesten Indiens reicht. In der Regel reicht die Monsunströmung nicht wie im Sommer 2010 bis nach Nordost-Pakistan. Hinzu kam 2010, dass gleichzeitig vom Arabischen Meer her ein mit viel Feuchtigkeit aufgeladenes Tiefdruckgebiet Richtung Pakistan zog und sich im nordwestlichen Indien mit der Monsunströmung vereinte.13

Worin liegen die Gründe für die besondere Monsunsituation im Sommer 2010 über dem Nordosten Pakistans? Im Allgemeinen wird als Erklärung der Einfluss des La-Niña-Phänomens herangezogen.12 Dabei handelt es sich um eine ungewöhnliche Abkühlung der Meeresoberflächentemperatur im östlichen äquatorialen Pazifik, dem Gegenpol von El Niño. Während El-Niño-Ereignisse in der Regel eine Schwächung der indischen Monsunströmung im Sommer verursachen, bewirkt ein La-Niña-Ereignis das Gegenteil. Ein solches Ereignis hat im Sommer 2010 im Golf von Bengalen für die Bildung von starken Monsuntiefs gesorgt, die dann regenreiche Luft bis nach Nordost-Pakistan transportiert haben. In der zweiten Juli-Hälfte bildete sich zudem ein stationäres Tief über dem Nordwesten Indiens aus, das feuchte Luftmassen in den Norden Pakistans lenkte.15 Zuvor schon hatte im Mai eine Hitzewelle über Pakstin mit Rekordtemperaturen von max. 53,5 °C ein starkes Tiefdruckgebiet über Mittel- und später über Nord-Pakistan entstehen lassen.13 So gesehen sind die starken Regenfälle das Resultat eines Zusammentreffens mehrerer natürlicher Wetterereignisse und direkt nicht auf den anthropogenen Treibhauseffekt zurückzuführen. Ein Trend zu mehr starken Niederschlägen waren nach Khandekar (2010) über Indien während der letzten 150 Jahre auch nicht festzustellen.15 Pakistanische Daten zu Starkregentagen zeigen dagegen durchaus einen Anstieg seit 1998, sind aber für eine Trendfeststellung zu kurz.16

Eine andere Erklärung der starken Niederschläge in Pakistan im Sommer 2010 bringt sie mit einer blockierenden Wetterlage des Polarjetstreams in Zusammenhang, die auch für die gleichzeitige russische Hitzewelle verantwortlich gewesen sei.17 Bei einer Blockierenden Wetterlage setzen sich größere Hoch- und Tiefdruckgebiete über mehrere Tage fest und können im Sommer Hitzewellen auf der einen und Starkniederschläge auf der anderen Seite bewirken. So lag im Sommer 2010 ein Tiefdruckgebiet über Mitteleuropa und Pakistan/Indien und dazwischen eine Hochdruckzelle über Russland. Ein Zusammenhang der ungewöhnlichen Blockierenden Wetterlage mit der globalen Erwärmung ist umstritten.

Neben Luftströmungen und Tiefdrucklagen spielten für das Hochwasser auch andere teils meteorologische, teils unmittelbar auf menschliche Einwirkungen zurückzuführende Gründe eine Rolle. So hat es in Nord-Pakistan im vorausgegangenen Winter hohe Schneefälle gegeben, deren starkes Abschmelzen im Sommer erheblich zu den katastrophalen Wasserständen der Flüsse beigetragen hatte. Außerdem ist es im Einzugsgebiet der nordpakistanischen Flüsse zu starken Abholzungen gekommen, durch die der Niederschlag ungehindert in Bächen und Flüssen abfließen konnte. Hintergrund ist, dass die wachsende Bevölkerung immer mehr Holz als Feuerholz brauchte und ihre Nutzflächen immer mehr auf Kosten von Waldbeständen ausdehnte.13

Indien und Bangladesch

Nach Bangladesch ist Indien das am stärksten durch Überschwemmungen gefährdete Land der Welt. Im Hinblick auf die Opfer von Menschenleben und die ökonomischen Verluste sind auch in Indien Hochwasser die gefährlichsten Naturkatastrophen. Ein Achtel des Landes ist durch Hochwasser gefährdet, insbesondere die Flussbecken von Ganges und Brahmaputra. In den 100 Jahren von 1915 bis 2015 hat Indien 649 Naturkatastrophen erlebt, wovon fast die Hälfte (302) Hochwasserkatastrophen waren.18 Ungefähr 30 Mio. Menschen sind jedes Jahr durch Hochwasser betroffen, bei 1500 Todesopfern jährlich, was etwa einem Fünftel der weltweiten Todesopfer durch Hochwasser entspricht. Die Anzahl der Todesopfer ist in den letzten 50 Jahren stark angestiegen, z.B. von 1000 pro Jahr im Jahrzehnt 1965-1975 auf 1700 pro Jahr in 2005-2015. Im selben Zeitraum waren 78 Mio. Inder, die hauptsächlich zur armen Bevölkerungsschicht gehörten, durch Zerstörung ihrer Wohngebäude, Ernteverluste etc. von Überschwemmungen betroffen. Die ökonomischen Verluste haben sich von 1995-2005 auf 2005-2015 auf 34,5 Mrd. US$ nahezu verdreifacht.18

Starkniederschlag in SO-Indien 2015
Abb. 6: Starkniederschläge 9.-16. November 2015 in mm in SO-IndienB6

Auch in jüngster Zeit hat Indien eine Reihe von verheerenden Hochwasserkatastrophen erlebt. So das Hochwasser von Bangalore im Juli 2016, im Nov./Dez. 2015 in Tamil Nadu und Andhra Pradesh in Südindien, wovon 4 Mio. Menschen betroffen waren, 2005 in Mumbai mit 1094 Toten, in Jammu und Kaschmir im September 2014 mit über 500 Opfern und einem Schaden von 1,5 Mrd. US$.8

Vom 1. zum 2. Dezember 2015 fielen in Tamil Nadu, einem Staat im Südosten Indiens, an einigen Messstellen über 400 mm Niederschlag in 24 Stunden. Ein so extremer Niederschlag kommt in der Region statistisch nur knapp alle 100 Jahre einmal vor. Vorausgegangen war die Entwicklung eines ausgeprägten Tiefdruckgebietes über dem Golf von Bengalen, das sehr viel Feuchtigkeit über die Küste von Südost-Indien brachte. Wahrscheinlich haben das sehr starke El-Niño-Phänomen und das warme Oberflächenwasser im Golf von Bengalen das Ereignis verursacht. Der starke El Niño 2015 bewirkte im Golf von Bengalen starke Ostwinde, die feuchte Luftmassen an die Ostküste Indiens heran transportierten. Aufgrund der hohen Temperaturen des Oberflächenwassers vor der Küste verdunstete sehr viel Wasser, so dass die Luft stark mit Wasserdampf angereichert war. Möglicherweise sind diese Temperaturen auf die globale Erwärmung zurückzuführen. Die Meeresoberflächentemperaturen des Golf von Bengalen zeigen über die letzten 100 Jahre einen deutlichen Anstieg von ca. 27,5 auf 28,5 °C. Ein weiterer möglicher Faktor ist die Urbanisierung mit ihrer Ausbildung städtischer Hitzeinseln, wie sie besonders für Chennai zutrifft.19

Bangladesch und Nepal gehören zu den Regionen des Indischen Monsuns mit starken Niederschlägen und häufigen Überschwemmungen. Die geographischen Bedingungen stellen für Bangladesch grundsätzlich ein hohes Risiko gegenüber Hochwasser dar. Das Land ist sowohl von Fluten durch das große Stromsystem des Ganges, Brahmaputra und Meghna bedroht als auch über das flache und ausgedehnte Delta vom Meer her. Ein großer Teil des Landes liegt sehr tief, 80 % sind potentielles Überschwemmungsgebiet. Hochwasser in Bangladesch sind normal, von Sturzfluten von den überfließenden, hochgelegenen Flüssen, Überschwemmungen durch starke Niederschläge, Monsunfluten durch die Hauptströme Ganges, Brahmaputra und Meghna bis zu Sturmfluten vom Golf von Bengalen in den Küstengebieten. In normalen Jahren stehen zeitweilig 20-25 % des Landes unter Wasser, in den extremen Jahren 1987, 1988 und 1998 waren es 60 %. Das Hochwasser von 1998 forderte 1100 Tote, und 30 Mio. Menschen wurden obdachlos. Hochwasser zerstören auch häufig die Lebensgrundlagen der Menschen wie Ernten, landwirtschaftliche Betriebe, Industriebetriebe, Häuser und Infrastrukturanlagen. Die Menschen verlieren nicht nur ihr Leben und ihre Heimat, sondern häufig auch ihre Arbeit. Die Flut von 1998 bedeutete außerdem für das ganze Land eine Hungerkrise, da die Reisernte zu einem großen Teil ausfiel.20

Anmerkungen
1. Laghari, A. N., Vanham, D., and Rauch, W. (2012): The Indus basin in the framework of current and future water resources management, Hydrol. Earth Syst. Sci., 16, 1063-1083
2. Tariq, M.A.U.R., N. van de Giesen (2012): Floods and flood management in Pakistan, Physics and Chemistry of the Earth 47–48, 11–20
3. Frenken, K. (Hg., FAO 2012): Irrigation in Southern and Eastern Asia in Figures. AQUASTAT Survey – 2011. FAO Water Reports 37
4. Harding, RJ, E.M. Blyth, O.A. Tuinenburg, A. Wiltshire (2013): Land atmosphere feedbacks and their role in the water resources of the Ganges basin. Science of the Total Environment, doi:10.1016/j.scitotenv.2013.03.016
5. Nepal, S., & A.B. Shrestha (2015): Impact of climate change on the hydrological regime of the Indus, Ganges and Brahmaputra river basins: a review of the literature, International Journal of Water Resources Development, 31:2, 201-218, DOI: 10.1080/07900627.2015.1030494
6. Wijngaard, R.R., A.F. Lutz, S. Nepal, S. Khanal, S. Pradhananga, A.B. Shrestha, and W.A. Immerzeel (2017): Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins, PLoS ONE 12(12): e0190224
7. Muthuwatta, L., U.A. Amarasinghe, A. Sood, and S. Lagudu (2017): Reviving the “Ganges Water Machine”: where and how much? Hydrology and Earth System Sciences, 21:2545-2557
8. Mukherjee, S., S. Aadhar, D. Stone, and V. Mishra (2017): Increase in extreme precipitation events under anthropogenic warming in India, Weather and Climate Extremes
9. Webster, P.J., et al. (2011): Were the 2010 Pakistan floods predictable?, Geophysical Research Letters 38, doi:10.1029/2010GL046346
10. Blunden, J., and D.S. Arndt, Eds. (2016): State of the Climate in 2015. Bull. Amer. Meteor. Soc., 97 (8), S1–S275, DOI:10.1175/2016BAMSStateoftheClimate.1
11. Webster, P.J., et al. (2011): Were the 2010 Pakistan floods predictable?, Geophysical Research Letters 38, doi:10.1029/2010GL046346
12. DWD Pressemitteilung vom 12.8.2010: Flutkatastrophe in Pakistan aus klimatologischer Sicht
13. Atta-ur-Rahman, Amir Nawaz Khan (2013): Analysis of 2010-flood causes, nature and magnitude in the Khyber Pakhtunkhwa, Pakistan, Natural Hazards 66, 887–904
14. Dash, S.K. (2009): Changes in the characteristics of rain events in India, Journal of Geophysical Research 114, doi:10.1029/2008JD010572
15. Khandekar, M.L. (2010): 2010 Pakistan Floods: Climate Change or Natural Variability?, CMOS Bulletin SCMO Vol.38, No.5, October 2010, 165-167
16. Webster, P.J., et al. (2011): Were the 2010 Pakistan floods predictable?, Geophysical Research Letters 38, doi:10.1029/2010GL046346
17. Hong, C.-C., H.-H. Hsu, N.-H. Lin, and H. Chiu (2011): Roles of European blocking and tropical‐extratropical interaction in the 2010 Pakistan flooding, Geophysical Research Letters 38, doi:10.1029/2011GL047583
18. Tripathi, P. (2015): Flood Disaster in India: An Analysis of trend and Preparedness, Interdisciplinary Journal of Contemporary Research, Vol. 2, No. 4, 91-98
19. Narasimhan, B., et al. (2016): Chennai Floods 2015. A rapid Assessment (Interdisciplinary Centre for Water Research Indian Institute of Science, Bangalore May 2016)
20. Dewan, T.H. (2015): Societal impacts and vulnerability to floods in Bangladesh and Nepal, Weather and Climate Extremes 7, 36–42

Bildquellen:
B1. WikimediaCommons: Flood damage in flood-affected Pakistan; Lizenz: Public domain, U.S. Government Works
B2. WikimediaCommons (2011): Ganges-Brahmaputra-Meghna basins, Autor: Pfly; Lizenz: CC BY-SA
B3. Laghari, A. N., Vanham, D., and Rauch, W. (2012): The Indus basin in the framework of current and future water resources management, Hydrol. Earth Syst. Sci., 16, 1063-1083; Lizenz: CC BY
B4. Mukherjee, S., S. Aadhar, D. Stone, and V. Mishra (2017): Increase in extreme precipitation events under anthropogenic warming in India, Weather and Climate Extremes,; Lizenz: CC BY-NC-ND
B5. Scott, M., NASA Earth Observatory (2011): Heavy Rains and Dry Lands Don’t Mix:Reflections on the 2010 Pakistan Flood; Lizenz: Public domain, NASA-Urheberrechtsrichtlinie-Seite oder JPL Image Use Policy
B6. Quelle: Pierce, H.F., and R. Gutro (2017): NASA Measures India’s Deadly Flooding Rains, Foto Credits: NASA/JAXA/Hal Pierce; Lizenz: Public domain

Autor: