Hamburger Bildungsserver

Sie lesen den Originaltext

Vielen Dank für Ihr Interesse an einer Übersetzung in leichte Sprache. Derzeit können wir Ihnen den Artikel leider nicht in leichter Sprache anbieten. Wir bemühen uns aber das Angebot zu erweitern.

Vielen Dank für Ihr Interesse an einer Übersetzung in Gebärden­sprache. Derzeit können wir Ihnen den Artikel leider nicht in Gebärdensprache anbieten. Wir bemühen uns aber das Angebot zu erweitern.

Hitzewellen und Gesundheit

Klima- und Wetterveränderungen können sich unmittelbar auf die menschliche Gesundheit auswirken.

Gesundheitliche Risiken

Klima- und Wetterveränderungen können sich unmittelbar auf die menschliche Gesundheit auswirken. Beispielsweise können steigende Durchschnittstemperaturen oder vermehrt vorkommende Hitze- und Kältewellen zu höheren Sterberaten führen oder das verstärkte Auftreten von Krankheiten fördern. Regelmäßiger auftretende durch den Klimawandel bedingte Extremereignisse (z.B. Dürren, Stürme, Sturmfluten, Überschwemmungen, Lawinenabgänge, Erdrutsche) stellen ebenfalls eine Bedrohung für die menschliche Gesundheit, nicht selten sogar mit Todesfolgen, dar.

Der Klimawandel verändert sowohl die tiefen als auch die hohen Temperaturen. Für die menschliche Gesundheit wirken sich vor allem der allmähliche Anstieg der Wintertemperaturen und die Zunahme von sehr heißen Tagen im Sommer aus. Die häufigste Erkrankung durch Hitzewellen ist die Hitzeerschöpfung.1a Starkes Schwitzen, Erschöpfungszustände und ein starkes Durstgefühl sind die wichtigsten Symptome. Die Hitzeerschöpfung kann sich bis zum Hitzschlag steigern. Dabei steigt die Körpertemperatur auf über 40 °C, die Haut ist trocken und heiß, und der Erkrankte kann in ein Koma fallen. Betroffen sind vor allem alte Menschen, die schlecht versorgt sind, sowie erkrankte Personen. Auch der Konsum von Alkohol und Aufputschmitteln sowie eine schlechte Wohnsituation kann anfällig machen. Der Hitzschlag kann zum Tod führen.

Hitzewellen mit Tagestemperaturen über 30 °C und tropischen Nächten, bei denen die Temperaturen nicht unter 20 °C absinken, haben sich in der jüngsten Vergangenheit in Ländern der mittleren Breiten als äußerst folgenreiche Extremereignisse erwiesen. So hat die europäische Hitzewelle 2003, die vielfach als Vorankündigung künftiger normaler Sommer verstanden wird, mehr als 70 000 Todesopfer gefordert, hauptsächlich in Frankreich und Italien.1b Nach der Zahl der Opfer wurde sie als die größte Umweltkatastrophe in Europa seit der „Großen Manndränke“ eingeschätzt.1c Auch die Hitzewelle im Juli 2006 hatte einige Tausend Todesopfer zur Folge, vor allem in den Niederlanden und Belgien.2a Nicht weniger schwerwiegend als die Hitzewelle 2003 in Mittel- und Westeuropa war dann die Hitzewelle 2010 im westlichen Russland. Sie war mit großflächigen Wald- und Torfbränden auf 25 Millionen ha verbunden, die zahlreiche Menschen obdachlos machten, Tote und Verletzte forderten. Zeitweilig wüteten allein in der Region südöstlich von Moskau über 700 Feuer. Die hitzebedingten Todesfälle in Russland werden auf 55 000 geschätzt, nicht wenige davon in Moskau durch Rauch und Luftverschmutzung.2b Untersuchungen zu diesen und anderen Hitzewellen haben gezeigt, welche Umwelt-, sozialen und individuellen Bedingungen bei Hitzewellen besondere Risiken darstellen.3

© Eigene Darstellung nach IPCC 2007, WG II


Abb. 1:
  Todesfälle pro Tag zwischen dem 25. Juli und dem 19. August 2003 in ParisB1

Meteorologische Bedingungen

Bei den meteorologischen Bedingungen ist nicht nur die reine Temperaturhöhe von Bedeutung. Für den Wärmeaustausch des menschlichen Körpers mit seiner Umgebung sind auch Strahlungsflüsse, Luftfeuchtigkeit und Windverhältnisse wichtig. Aussagekräftiger als die gemessene Temperatur ist daher die sog. gefühlte Temperatur. Besonders in den feuchten Tropen spielt die relative Luftfeuchtigkeit eine entscheidende Rolle. Während in in den trockenen Subtropen der menschliche Körper sich durch Schwitzen abkühlen kann, ist diese Funktion in den feuchten Tropen deutlich eingeschränkt. Als Maß für die hohe Belastung des menschlichen Körpers unter feuchten und heißen Bedingungen wird die Kühlgrenztemperatur (engl. wet-bulb temperature) benutzt. Sie drückt physikalisch aus, auf welchen Wert Luft durch Verdunstung bis zum Sättigungswert (100 % relative Luftfeuchtigkeit) abgekühlt werden kann. Eine Temperatur von 50 °C mit einer Luftfeuchte von 80 % besitzt z.B. eine Kühlgrenztemperatur von 36 °C.4a Schon bei einer Kühlgrenztemperatur von 35 °C ist menschliches Überleben nicht mehr möglich, da sich der menschliche Körper durch Schwitzen nicht mehr selbst abkühlen kann. Eine Kühlgrenztemperatur von 35 °C kommt unter den heutigen klimatischen Bedingungen weltweit praktisch nicht vor. Sie liegt selbst bei gegenwärtigen Hitzewellen, die Tausende Tote erforderten, maximal zwischen 29 °C und 31 °C.4b

© E.-S. Im et al. 2017


Abb. 2: Geographische Verteilung der höchsten täglichen Kühlgrenztemperaturen in Süd-AsienB1

Weltweit gibt es vor allem drei Regionen, in denen eine Kühlgrenztemperatur von 28 °C bei Hitzewellen überschritten wird: SW-Asien um den Persischen Golf und das Rote Meer, Süd-Asien im Indus- und Ganges-Tal und das östliche China (Abb. 2). Die ausgedehnten Talregionen am Indus und Ganges sind deshalb als besonders kritisch zu sehen, weil hier eine sehr dichte Bevölkerung lebt, die zudem zu einem erheblichen Teil ohne den Schutz von Gebäuden im Freien landwirtschaftlich tätig ist.4c Gründe für die hohe Luftfeuchtigkeit in dieser Region liegen zum einen in den feuchten Luftmassen, die mit dem Sommermonsun vom Arabischen Meer und dem Golf von Bengalen ins Landesinnere transportiert werden. Zum anderen verdunstet sehr viel Wasser über den ausgedehnten Bewässerungsflächen der landwirtschaftlichen Nutzflächen in beiden Tälern.

Hinzu kommt, dass die offiziellen Temperaturwerte, die meistens in weniger dicht bebauten Gebieten wie z.B. an Flughäfen gemessen werden, oft nicht die Verhältnisse widerspiegeln, die für die Gesundheit der Menschen etwa in städtischen Wohngebieten von Belang sind. Außerdem muss auch berücksichtigt werden, wie sich die meteorologischen Verhältnisse in den Wochen vor der eigentlichen Hitzewelle entwickelt haben, da sich die Menschen an allmähliche Temperatursteigerungen z.B. besser anpassen können als an plötzlich einsetzende heiße Perioden.

Umweltbedingungen und Verhalten

Neben den Wetterlagen sind das Wohnumfeld und die Wohnbedingungen als besondere Risikofaktoren bei Hitzewellen einzuschätzen.5 Dabei spielen die topographische Lage ebenso eine Rolle wie die Bebauung und die Bausubstanz. So sind Tal- und Kessellagen, die das Einströmen und Abließen von Luftmassen behindern, besondere Risikogebiete. Das ist vor allem bei großen Städten, wie in Deutschland z.B. bei Stuttgart, der Fall. Menschen, die in Städten leben, sind bei Hitzewellen stärker gefährdet als Menschen auf dem Land. Städte sind grundsätzlich, vor allem aber nachts, wärmer als ihre Umgebung. Der Unterschied bei den Nachttemperaturen kann bei Megastädten durchaus 10 °C und mehr betragen.6 Der Grund liegt in der dichten Bebauung, der hohen Versiegelung, den fehlenden Grünflächen und fehlendem Baumbestand. Durch Gebäude und versiegelte Flächen ist nachts die Infrarotstrahlung größer als in unbebauten Gebieten. Außerdem sind der Luftaustausch sowie die Verdunstung und deren Abkühlungseffekt stark eingeschränkt. Eine wichtige Rolle spielt auch die Bausubstanz. So sind die durch ihre dicken Außen- und Innenwände gut gedämmten und mit hohen Räumen versehenen Häuser der Gründerzeit ein besserer Schutz gegen zu große Hitze als die niedrigen, dünnwandigen Räume in den Häusern der 1970er Jahre. Weitere Faktoren sind die Ausrichtung der Fenster und die Lage der Wohnräume, ob im Dachgeschoss oder im Souterrain.

© NASA Earth Observatory


Abb. 3:
Hitzewelle am 11. und 12. Mai 1997 in Atlanta (USA). Während die Lufttemperatur unter 27 °C lag, erreichten manche Bodenwerte 47,8 °C.B3

Ob Menschen bei Hitzewellen erkranken oder gar sterben, hängt aber auch von ihrem Verhalten und ihrer Konstitution ab. Unangepasstes Verhalten kann auch bei gesunden Menschen zu einer Gefahr werden. Dazu gehören eine falsche Bekleidung, zu geringe Flüssigkeitsaufnahme, zu hohe körperliche Aktivität, Alkohol- oder Drogenkonsum. Bei Personen in Alten- und Pflegeheimen hat sich z.B. bei der Hitzewelle 2003 in Frankreich das Verhalten des Pflege- und Ärztepersonals als problematisch erwiesen. Hilflose Menschen wurden durch Unterbringung in den falschen Räumen nicht genügend vor der größten Hitzeeinwirkung geschützt, man gab ihnen nicht genug zu trinken etc. Als besonders gefährdete Personenkreise gelten ältere Menschen, Kleinkinder, Menschen mit bestimmten Vorerkrankungen wie Herzkreislauferkrankungen, Diabetes u.a. Ältere Menschen sind häufiger durch andere Krankheiten belastet, die ihre Sensitivität auf thermische Belastungen erhöhen. Kleinkinder produzieren pro Körpergewicht mehr Wärme und können sich schlechter an Temperaturveränderungen anpassen. Unter den Hitzeopfern gab es bisher aber auch mehr Frauen als Männer, was allerdings vor allem damit zusammenhängt, dass es mehr ältere Frauen gibt. Eine Rolle spielt auch, dass Personen über 75 in städtischen Wärmeinseln konzentriert sind.6; 7

Anmerkungen
1a. 
Robert Koch-Institut (2011): Klimawandel und Gesundheit - Ein Sachstandsbericht 
1b. 
Robine, J.-M., et al. (2008): Death toll exceeded 70,000 in Europe during the summer of 2003, C. R. Biologies 331, 171–178 
1c.
Jendritzky, G., und C. Koppe: Die Auswirkungen von thermischen Belastungen auf die Mortalität, in: J.L. Lozán u.a. (Hg.): Warnsignal Klima – Gesundheitsrisiken. Gefahren für Pflanzen, Tiere und Menschen, Hamburg 2008,149-153
2a. Mücke, H.-G. (2008): Gesundheitliche Auswirkungen von klimabeeinflussten Luftverunreinigungen, in: J.L. Lozán u.a. (Hg.): Warnsignal Klima – Gesundheitsrisiken. Gefahren für Pflanzen, Tiere und Menschen, Hamburg, 121-125
2b.  Barriopedro, D., et al.(2012): The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe, Science 332, 220-224
3. Jendritzky, G. (2007): Die Folgen des Klimawandels für die Gesundheit, in: Wilfried Endlicher, Friedrich-Wilhelm Gerstengarbe: Der Klimawandel – Einblicke, Rückblicke und Ausblicke, 108-118; Kovats, R.S., and S. Hajat: Heat Stress and Public Health: A Critical Review, Annual Review of Public Health 29, 41-55; IPCC (2007): Climate Change 2007, Working Group II: Impacts, Adaptation and Vulnerability, 8.2.1
4a. van Oldenborgh, G.J., S. Philip, S. Kew, M. van Weele, P. Uhe, F. Otto, R. Singh, I. Pai, and K. AchutaRao (2017): Extreme heat in India and anthropogenic climate change, Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2017-107
4b.
Coffel, E.D., Ra.M. Horton and A. de Sherbinin (2018): Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett. 13 (2018) 014001
4c.
Im, E.-S., J.S. Pal, E.A.B. Eltahir (2017): Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 3, e1603322
5. Blättner, B, Heckenhahn M, Georgy S, Grewe HA, Kupski S (2009): Wohngebiete mit hitzeabhängigen Risiken ermitteln. Soziodemografisches und klimatisches Mapping in Stadt und Landkreis als Planungsinstrument gezielter Prävention. Bundesgesundheitsblatt 2010
6. Baumüller, J. (2008): Stadtklima im Klimawandel, in: J.L. Lozán u.a. (Hg.): Warnsignal Klima – Gesundheitsrisiken. Gefahren für Pflanzen, Tiere und Menschen, Hamburg, 108-114
7. Wichert, P.v. (2008): Hitzewellen und thermophysiologische Effekte bei geschwächten bzw. vorgeschädigten Personen, in: J.L. Lozán u.a. (Hg.): Warnsignal Klima – Gesundheitsrisiken. Gefahren für Pflanzen, Tiere und Menschen, Hamburg 2008, 154-158; Jendritzki, G., und C. Koppe: Die Auswirkungen von thermischen Belastungen auf die Mortalität, in: J.L. Lozán u.a. (Hg.): Warnsignal Klima – Gesundheitsrisiken. Gefahren für Pflanzen, Tiere und Menschen, Hamburg 2008,149-153

Bildquellen
B1.
Eigene Darstellung nach IPCC (2007): Climate Change 2007, Working Group II: Impacts, Adaptation and Vulnerability, Figure 8.2
B2. Im, E.-S., J. S. Pal, E. A. B. Eltahir (2017): Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 3, e1603322; Lizenz: CC BY-NC
B3. NASA Earth Observatory: Beating the Heat In the World’s Big Cities – online: http://earthobservatory.nasa.gov/Features/GreenRoof/