Folgen für landwirtschaftliche Kulturen

Folgen für landwirtschaftliche Kulturen

Klimatische Änderungen haben auf einzelne Kulturarten unterschiedliche Auswirkungen, da sie verschiedene Ansprüche an die Witterungsbedingungen stellen. So lieben Halmfrüchte in Mitteleuropa während des ersten, längeren Teils ihrer Wachstumsphase kühle und feuchte, am Ende dagegen eher trockene und warme Bedingungen. Bei Hackfrüchten dagegen sollte es anfangs eher warm und trocken, anschließend dann kühl und feucht sein. Für Europa ist damit zu rechnen, dass sich das Artenspektrum der Anbaufrüchte nach Norden verschiebt. In Deutschland könnte sich im Südwesten künftig der Anbau von Soja lohnen, für Kartoffeln, Roggen und Hafer werden die klimatischen Bedingungen dagegen eher ungünstiger.

Getreide

Die weltweit wichtigsten Getreidearten für die menschliche Ernährung sind Weizen und Reis. Während Weizen in gemäßigten Breiten die mit Abstand wichtigste Anbaufrucht ist, gilt dies für Reis in tropischen und subtropischen Regionen. Für mehr als die Hälfte der Weltbevölkerung ist Reis das wichtigste Nahrungsmittel, in manchen Ländern Asiens zu über 80 %. Hinzu kommt Mais, das vor allem als Futterpflanze genutzt wird, in Lateinamerika und Afrika aber auch ein wichtiges Grundnahrungsmittel darstellt, und auf etwa einem Viertel der globalen Getreidefläche wächst.

Weizen

Weizen bevorzugt wintermilde, sommerwarme und strahlungsintensive Klimabedingungen. Der Trend zu milderen Wintern hat sich in Deutschland bereits positiv ausgewirkt und den Winterweizenanbau begünstigt, der ca. 98 % der Weizenanbaufläche einnimmt. Der relativ hohe Wasserverbrauch von Weizen macht allerdings die Wasserversorgung zu einer kritischen Größe, insbesondere im Frühjahr, wenn die Halme schnell wachsen, aber auch während der Kornreife im Frühsommer. Die Temperaturen sollten während der Kornreife nicht zu hoch sein, d.h. möglichst nicht über 25 °C liegen. Schon eine Erhöhung der Temperatur um 1 °C führt nach Untersuchungen z.B. in Süddeutschland zu einer Verkürzung der Kornfüllungsphase und damit zu Ertragsrückgängen um bis zu 8 %.1 Das Hitzejahr 2003 mit seiner Trockenphase seit Februar und hohen Sommertemperaturen hatte entsprechend eine Ertragseinbuße bei Winterweizen um 9 % in Brandenburg und 14 % in Baden-Württemberg zur Folge.2

Reis

Reis wird vor allem in China, Indien und Südostasien angebaut. Studien haben gezeigt, dass in China die Reisernten einerseits von der steigenden CO2-Konzentration profitieren werden. Andererseits wird aber die steigende Temperatur diesen Effekt wieder aufheben. Auch in Indien würde ein Temperaturanstieg von 2 °C den CO2-Düngungseffekt aufwiegen. Hinzu kommen noch Schädigungen durch eine steigende O3-Konzentration, deren Interaktion mit CO2 noch wenig erforscht ist.3

Mais
Studien, die den Einfluss des bereits erfolgten Klimawandels 1980-2008 auf die vier wichtigsten landwirtschaftlichen Anbauprodukte Mais, Weizen, Reis und Sojabohnen, die ca. 75 % der Kalorien liefern, die der Mensch direkt oder indirekt weltweit zu sich nimmt, untersucht haben,4 zeigen eine Abnahme der Ernteerträge von 3,8 % bei Mais im Vergleich zu einer Welt ohne Klimawandel. Als wichtigster Faktor hat sich die Temperaturzunahme in der Wachstumsphase erwiesen. Nach Modellrechnungen bedeutet ein Anstieg von 1 °C einen Ernteverlust von 10 %. Die Niederschläge haben sich nur geringfügig verändert und spielen im globalen Mittel nur eine leicht negative Rolle für die Ernten. Auf den Anstieg des CO2-Gehalts hat der Mais als C4-Pflanze nicht nennenswert reagiert.

Der geringe Einfluss des CO2-Düngungseffekts ist auch dafür verantwortlich, dass für Mais ein deutlicher Rückgang der globalen Produktion bis zum Ende des 21. Jahrhunderts erwartet wird. So ergaben Modellrechnungen eine Reduktion von 2,7% bei dem Szenario RCP 2.6 und von 12,8 % bei RCP 8.5. Betroffen sind vor allem die mittleren und niederen Breiten, während in den hohen Breiten die Maisernten von der Temperaturerhöhung profitieren. Starke Verluste durch Hitzestress bei RCP 8.5 werden vor allem im Maisgürtel der USA, im Mittleren Osten, in West- und Süd-Asien und in Nordost-China erwartet. Aber auch Brasilien, Mexiko und Argentinien müssen mit starken Ernteeinbußen bei Mais rechnen.5

Weinbau

Bei kaum einer Anbaufrucht ist der Zusammenhang zwischen den klimatischen Verhältnissen und der Art des Ertrages so eng wie beim Anbau von Wein. Nicht nur, dass die Temperaturen ziemlich genau die Grenzen des Weinbaus abstecken, es sind auch bestimmte Sorten auf ganz bestimmte klimatische Bedingungen angewiesen. So kommt etwa der Müller-Thurgau mit 13-15 °C in der Wachstumszeit aus, während Cabernet Sauvignon 17-19 °C braucht.6 Weltweit gesehen konzentriert sich der Weinanbau auf eine Zone zwischen dem 30. und 50. Breitengrad auf der Nord- und dem 30. und 40. Breitengrad auf der Südhalbkugel. Genauer kann man die Verbreitung durch die mittlere Isotherme von 12 bis 22 °C in der Wachstumszeit (April-Oktober auf der Nordhalbkugel, Oktober bis April auf der Südhemisphäre) abgrenzen.

In der 2. Hälfte des 20. Jahrhunderts sind die Temperaturen in wichtigen Anbaugebieten weltweit um 1,4 °C in der Wachstumsperiode angestiegen, mit einer stärkeren Erhöhung der Nacht- im Vergleich zu den Tagestemperaturen. Bis zur Mitte dieses Jahrhunderts werden wahrscheinlich einige Gebiete in Nordafrika, Vorderasien und Nordamerika zu warm für den Weinanbau. Dagegen wird sich der Anbau in Europa, Nordamerika und Asien z.T. deutlich nach Nord ausdehnen. Auf der Südhalbkugel dagegen ist eine Ausdehnung in höhere Breiten wegen fehlender Landmassen größtenteils nicht möglich.7

Anmerkungen:
1.
Schaller, M., und H.-J. Weigel (2007): Lobell, D.B., W. Schlenker, J. Costa-Roberts (2011): Climate Trends and Global Crop Production Since 1980, Science Express, 5 May 2011 / 10.1126/science.1204531, 1-9
2. Marc Zebisch; Torsten Grothmann; Dagmar Schröter; Clemens Hasse; Uta Fritsch; Wolfgang Cramer (2005): Klimawandel in Deutschland - Vulnerabilität und Anpassungsstrategien klimasensitiver Systeme
3. E. A. Ainsworth (2008): Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentrations. Global Change Biology: 14, 1642-1650
4. Lobell, D.B., W. Schlenker, J. Costa-Roberts (2011): Climate Trends and Global Crop Production Since 1980, Science Express, 5 May 2011 / 10.1126/science.1204531, 1-9 , Sonderheft 316
5. Deryng, D., D. Conway, N. Ramankutty, J. Pric2 and R. Warren (2014): Global crop yield response to extreme heat stress under multiple climate change futures, Environmental Research Letters 9, doi:10.1088/1748-9326/9/3/034011
6. Jones, G.V. (2007): Climate Change and the global wine industry, Australian Wine Industry Technical Conference, Adelaide, Australia. July 28-August 2, 2007
7. Schultz H.R., u.a. (2009): Weinbau und Klimawandel: Regionen im Umbruch, DWD Klimastatusbericht 2009, 12-20


 

Autor: