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November 9 to 13, 2023

Problem 1: Find all strictly increasing sequences 1 = a1 < a2 < a3 < ⋯ of
positive integers satisfying

3(a1 + a2 + ⋅ ⋅ ⋅ + an) = an+1 + an+2 + ⋅ ⋅ ⋅ + a2n

for all positive integers n.

Solution: The strictly increasing sequence (an) with an = 2n − 1 for all n ∈ Z+
satisfies a1 = 1 and solves the given equation, since 1 + 3 + ⋅ ⋅ ⋅ + (2n − 1) = n2 and
(2n + 1) + (2n + 3) + ⋅ ⋅ ⋅ + (4n − 1) = (2n)2 − n2 = 3n2 for all n ∈ Z+.

We claim that no other sequence is suitable. Let (bn) be a sequence that meets
all requirements of the problem.

Let k ∈ Z+. Note that the given equation for k and k + 1 implies

3 ⋅
k

∑
l=1

bℓ =
2k

∑
l=k+1

bℓ,

3 ⋅
k+1
∑
l=1

bℓ =
2k+2
∑

l=k+2
bℓ;

the difference of the two equations yields 3bk+1 = −bk+1 + b2k+1 + b2k+2. In other
words, the equation

4bk+1 = b2k+1 + b2k+2 (*)

holds for all k ∈ Z+.

Equation (*) implies that the numbers b2k+1 and b2k+2 have the same parity for
every k ∈ Z+. Since (bn) is strictly increasing, we can deduce that b2k+2 ≥ b2k+1 + 2.
Shifting indices we also obtain 4bk+2 = b2k+3 + b2k+4 from equation (*). Note that
b2k+3 ≥ b2k+2 + 1 ≥ b2k+1 + 3. Similarly, since b2k+3 and b2k+4 must have the same
parity, b2k+4 ≥ b2k+3 + 2 ≥ b2k+2 + 3, so that

4bk+2 = b2k+3 + b2k+4
≥ (b2k+1 + 3) + (b2k+2 + 3)
= 4bk+1 + 6.

We can conclude that

bk+2 ≥ bk+1 + 2 for all k ∈ Z+. (**)

Now we are ready to show that bn = 2n − 1 for all n ∈ Z+. More precisely, we use
strong induction to show that b2k−1 = 4k − 3 and b2k = 4k − 1 for all k ∈ Z+. The
claim implies bn = 2n − 1 for all n ∈ Z+.
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For the start of the induction, note that we have b1 = 1 by definition; the given
condition for n = 1 implies b2 = 3b1 = 3. Hence, the equations b2k−1 = 4k − 3 and
b2k = 4k − 1 are true for k = 1.

For the induction step, let k ≥ 1 and assume that b2ℓ−1 = 4ℓ − 3 and b2ℓ = 4ℓ − 1 for
all l ∈ {1, . . . , k}. We want to show that b2k+1 = 4k + 1 and b2k+2 = 4k + 3.

Since k+1 ≤ 2k the induction hypothesis implies bk+1 = 2k+1. Equation (*) implies
b2k+1 + b2k+2 = 8k + 4. By induction hypothesis b2k = 4k − 1, so that by virtue of
inequality (**) we have b2k+1 ≥ 4k + 1 and b2k+2 ≥ 4k + 3. Since the sum of the two
function values is 8k + 4, we must have b2k+1 = 4k + 1 and b2k+2 = 4k + 3.
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Problem 2: Let a1, a2, . . . , a2023 be positive real numbers with

a1 + a
2
2 + a

3
3 + ⋅ ⋅ ⋅ + a

2023
2023 = 2023.

Show that

a20231 + a20222 + ⋅ ⋅ ⋅ + a22022 + a2023 > 1 +
1

2023
.

Solution: Let us prove that conversely, the condition

a20231 + a20222 + ⋅ ⋅ ⋅ + a2023 ≤ 1 +
1

2023

implies that
S ∶= a1 + a

2
2 + ⋅ ⋅ ⋅ + a

2023
2023 < 2023.

This is trivial if all ai are less than 1. So suppose that there is an i with ai ≥ 1,
clearly it is unique and ai < 1 +

1
2023 . Then we have

aii < (1 +
1

2023
)
2023

= 1 +
2023

∑
k=1

1

k!
⋅
2023

2023
⋅
2022

2023
. . . ⋅

2023 − k + 1

2023

< 1 +
2023

∑
k=1

1

k!
≤ 1 +

2022

∑
k=0

1

2k
< 3,

1011

∑
k=1,
k≠i

akk ≤ 1011 and
2023

∑
k=1012,

k≠i

akk ≤
2023

∑
k=1012,

k≠i

a2024−kk <
1

2023
.

Hence we have

S = aii +
1011

∑
k=1,
k≠i

akk +
2023

∑
k=1012,

k≠i

akk < 3 + 1011 +
1

2023
< 2023.

Remark: While the estimates might seem crude, the resulting bound is not so far
away from the truth: If we replace 2023 by n and the bound by 1 + cn, then our
argument shows that cn ≥

1
n , at least for large n, while the optimal bound has

cn ≍
logn
n (as in fact a slightly more careful version of our argument immediately

shows!).
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Problem 3: Denote a set of equations in the real numbers with variables
x1, x2, x3 ∈ R Flensburgian if there exists an i ∈ {1,2,3} such that every solution
of the set of equations where all the variables are pairwise different, satisfies
xi > xj for all j ≠ i.

Determine for which positive integers n ≥ 2, the following set of two equa-
tions

an + b = a and cn+1 + b2 = ab

in the three real variables a, b, c is Flensburgian.

Solution: The set of equations given in the problem statement is Flensburgian
precisely when n is even.

To see that it is not Flensburgian when n ≥ 3 is odd, notice that if (a, b, c) satisfies
the set of equations then so does (−a,−b,−c). Hence, if there exists a single
solution to the set of equation where all the variables are different then the set of
equations cannot be Flensburgian. This is in fact the case, e.g., consider (a, b, c) =

(12 ,
2n−1−1

2n , (2
n−1−1
22n )

1
n+1
).

The rest of the solution is dedicated to prove that the set of equations is indeed
Flensburgian when n is even.

The first equation yields b = a−an ≤ a, since an ≥ 0 when n is even. The inequality
is strict whenever a ≠ 0 and the case a = 0 implies b = 0, i.e. a = b, which we can
disregard. Substituting the relation b = a−an into the second equation yields

0 =cn+1 + (a − an)2 − a(a − an) = cn+1 + a2n − an+1, i.e.
cn+1 = an+1 − a2n < an+1

since we can disregard a = 0 and 2n is even. Since n+1 is odd, the polynomial xn+1

is strictly increasing, implying that c < a. Hence, when n is even, all solutions of
the set of equations where a, b, c are pairwise different satisfy a > b and a > c.
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Problem 4: Determine all functions f ∶R→ R that satisfy

f(f(x) + y) + xf(y) = f(xy + y) + f(x)

for all real numbers x and y.

Solution: Let P (x, y) denote the assertion of the given functional equation.

Claim 1: f(0) = 0.

Proof. Note that P (0, y) and P (x,0) gives us the following:

f(y + f(0)) = f(y) + f(0)

f(f(x)) + xf(0) = f(0) + f(x).

Consider the first expression. Plugging y = −f(0) in it yields

f(−f(0) + f(0)) = f(−f(0)) + f(0), i.e. f(−f(0)) = 0.

If we denote −f(0) = a, then we have f(a) = 0. Plugging x = a in the second
expression gives us:

f(f(a)) + af(0) = f(0) + f(a), i.e. af(0) = 0.

This either means that a = 0, i.e. f(0) = 0 or f(0) = 0. In both cases the claim is
proved.

Since f(0) = 0, the expression P (x,0) becomes

f(f(x)) = f(x). (*)

Claim 2: f(1) = 1 or f(x) = 0 for all real numbers x.

Proof. Consider P (x,1):

f(f(x) + 1) + xf(1) = f(x + 1) + f(x).

Replacing x by f(x) and using (*) leads to:

f(f(f(x)) + 1) + f(x)f(1) = f(f(x) + 1) + f(f(x))

f(f(x) + 1) + f(x)f(1) = f(f(x) + 1) + f(x)

f(x)f(1) = f(x).

Suppose that there does not exist such b that f(b) ≠ 0, then f(x) = 0 for all real
numbers x. Otherwise f(b)f(1) = f(b) implies f(1) = 1 as desired.
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Claim 3: If f(1) = 1 and f(a) = 0, then a = 0.

Proof. Suppose f(a) = 0 for some real number a. Then P (a,1) gives us

f(f(a) + 1) + af(1) = f(a + 1) + f(a)

f(1) + a = f(a + 1) = a + 1.

On the other hand P (1, a) leads us to the following:

f(f(1) + a) + f(a) = f(2a) + f(1)

f(a + 1) = f(2a) + 1

a + 1 = f(2a) + 1

f(2a) = a.

Taking f from both sides in the last relation and using (*) leads to:

0 = f(a) = f(f(2a)) = f(2a) = a.

This proves the claim.

To finish the problem, consider P (x,x − f(x)):

xf(x − f(x)) = f((x − f(x)) ⋅ (x + 1)).

Setting x = −1 gives us

−f(−1 − f(−1)) = f((−1 − f(−1)) ⋅ 0) = f(0) = 0.

From Claim 3 for f /≡ 0 we obtain that −1 − f(−1) = 0 implies f(−1) = −1. Now
looking at P (−1, y) and replacing y by y + 1, we get that

f(y − 1) = f(y) − 1 implies f(y + 1) = f(y) + 1.

On the other hand, P (x,1), the previous relation and (*) give us the follow-
ing:

f(f(x) + 1) + x = f(x + 1) + f(x)

f(f(x)) + 1 + x = f(x) + 1 + f(x)

f(x) + x = 2f(x)

f(x) = x.

Thus, the only possible functions that satisfy the given relation are f(x) = x and
f(x) = 0. It is easy to check that they indeed solve the functional equation.
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Problem 5: Find the smallest positive real number α, such that

x + y

2
≥ α
√
xy + (1 − α)

√
x2 + y2

2

for all positive real numbers x and y.

Solution: Let us prove that α = 1
2 works. Then the following inequality should

hold for all positive real numbers x and y:

x + y

2
≥
1

2

√
xy +

1

2

√
x2 + y2

2

⇐⇒ (x + y)2 ≥ xy +
x2 + y2

2
+ 2

√

xy ⋅
x2 + y2

2

⇐⇒ (x + y)2 ≥ 4

√

xy ⋅
x2 + y2

2

⇐⇒ (x + y)4 ≥ 8xy(x2 + y2)

⇐⇒ (x − y)4 ≥ 0

which is true, so we showed that α = 1
2 actually works.

Now it remains to show that α ≥ 1
2 . Let’s consider x = 1 + ε and y = 1 − ε where

ε < 1. Then the inequality becomes

1 ≥ α
√
1 − ε2 + (1 − α)

√
1 + ε2, i.e. α ≥

√
1 + ε2 − 1

√
1 + ε2 −

√
1 − ε2

.

Notice that
√
1 + ε2 − 1

√
1 + ε2 −

√
1 − ε2

=
(
√
1 + ε2 − 1)(

√
1 + ε2 + 1)(

√
1 + ε2 +

√
1 − ε2)

(
√
1 + ε2 −

√
1 − ε2)(

√
1 + ε2 +

√
1 − ε2)(

√
1 + ε2 + 1)

=
ε2(
√
1 + ε2 +

√
1 − ε2)

2ε2(
√
1 + ε2 + 1)

=

√
1 + ε2 + 1 − 1 +

√
1 − ε2

2(
√
1 + ε2 + 1)

=
1

2
−

1 −
√
1 − ε2

2(
√
1 + ε2 + 1)

=
1

2
−
(1 −
√
1 − ε2)(1 +

√
1 − ε2)

2(
√
1 + ε2 + 1)(1 +

√
1 − ε2)

=
1

2
−

ε2

2(
√
1 + ε2 + 1)(1 +

√
1 − ε2)

>
1

2
−

ε2

4 ⋅ (1 +
√
2)

.

As ε can be arbitrarily small this expression can get arbitrarily close to 1
2 . This

means that α < 1
2 cannot hold, as desired.

7



November 9 to 13, 2023

2nd Solution: We substitute p = xy, q = x2+y2
2 . Note that (x+y)2 = 2(p+q). Hence,

the given inequality is equivalent to

√
p + q

2
≥ α
√
p + (1 − α)

√
q. (*)

By the inequality between arithmetic and geometric mean, we always have q ≥ p.

Conversely, given q ≥ p > 0 we can always find x, y > 0 with p = xy, q = x2+y2
2 ,

namely

x =

√

q +
√
q2 − p2, y =

√

q −
√
q2 − p2.

Hence, α satisfies the condition if and only if (*) holds for all q ≥ p > 0.

Now if α = 1
2 then (*) reads

√
p+q
2 ≥

√
p+√q

2 , which follows directly from the inequal-
ity between arithmetic and quadratic mean.

We now show that α < 1
2 does not work. We consider p = 1 and write

g(q) =

√
1 + q

2
− α − (1 − α)

√
q

for q ≥ 1. Note that g(1) = 0 and

g′(q) =
1

2
√
2(1 + q)

−
1 − α

2
√
q
.

Hence, g′(1) = 1
4 −

1−α
2 =

2α−1
4 . If α < 1

2 we thus have g′(1) < 0, which means that
g(q) < 0 for q sufficiently close to 1. This shows that the inequality (*) is false for
such a choice of q, which completes the proof.
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Problem 6: Let n be a positive integer. Each cell of an n × n table is
coloured in one of k colours where every colour is used at least once. Two
different colours A and B are said to touch each other, if there exists a cell
coloured in A sharing a side with a cell coloured in B. The table is coloured
in such a way that each colour touches at most 2 other colours. What is the
maximal value of k in terms of n?

Solution: k = 2n − 1 when n ≠ 2 and k = 4 when n = 2.

k = 2n − 1 is possible by colouring diagonally as shown in the figure below and
when n = 2, k = 4 is possible by colouring each cell in a unique colour.

We consider the graph, where each node represents a colour and two nodes are
linked, if the colours they represent touch. This graph is connected and since each
colour touches at most 2 colours every node has at most degree 2. This means
that the graph is either one long chain or one big cycle.

1 2 3 k. . .

We now look at the case when n is odd. Consider the cell in the center of the table.
From this cell we can get to any other cell by passing through at most n − 1 cells.
Therefore from the node representing this cell, we can get to any node through at
most n−1 edges. But if the graph has 2n or more nodes, then for every node there
is a node which is more than n − 1 edges away. So we must have k ≤ 2n − 1 for all
odd n.

When n is even we consider the 4 center cells. If they all have a different colour,
then they form a 4-cycle in the graph, meaning the graph has only 4 nodes. If two
of the center cells have the same colour, then from this colour you will be able to
get to all other cells passing thorugh at most n − 1 cells. By same the arguments
as in the odd case, we get k ≤max(2n − 1,4) for even n.

So overall we have k ≤ 2n − 1 for n ≠ 2 and k ≤ 4 for n = 2 as desired.
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Problem 7: A robot moves in the plane in a straight line, but every one
meter it turns 90○ to the right or to the left. At some point it reaches its
starting point without having visited any other point more than once, and
stops immediately. What are the possible path lengths of the robot?

Solution: Let us define the coordinates system with unit length of one meter,
point of origin in the starting point and vertical-horizontal axes. W.l.o.g. assume
that the first move was east and the path had length of n. Then each odd move
changed x coordinate of the robot by 1 and each even move changed y coordinate
by 1.

At the end of the day both coordinates were equal to zero again, so there had to
be even number of odd and even number of even moves. That implies that only n
divisible by 4 can fulfill the conditions.

For n = 4 we have a square path. For n = 8 we had 4 changes of x coordinate and 4
changes of y, so the whole path was inside some 2×2 square. Unfortunately that’s
not possible without reaching some point twice.

Now, we will prove that all n > 8 divisible by 4 are good. For n = 12 there is a path
in shape of “+” with first 4 moves like (→, ↑,→, ↑). Now we can change the middle
(↑,→) sequence by (↓,→, ↑,→, ↑,←). Thanks to this change the robot explored
new territory south-east from the one before explored. We got +4 of length of the
path. There we can do it again and again, reaching any length of 4k + 8 for all
k ∈ Z+.
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Problem 8: In the city of Flensburg there is a single, infinitely long, street
with houses numbered 2, 3, . . . The police in Flensburg is trying to catch a
thief who every night moves from the house where she is currently hiding to
one of its neighbouring houses.

To taunt the local law enforcement the thief reveals every morning the highest
prime divisor of the number of the house she has moved to.

Every Sunday afternoon the police searches a single house, and they catch the
thief if they search the house she is currently occupying. Does the police have
a strategy to catch the thief in finite time?

Solution: We will prove that the police is always able to catch the thief in finite
time.

Let hi denote the house the thief stays at the i-th night and pi denote the greatest
prime divisor of hi.

The police knows that she stays at different neighbouring houses every night, so
hi+1−hi = 1 for all non-negative integers i. Let us assume that the police is given the
address of the thief’s first two hiding spots, then we will prove by induction that
the police can determine hi precisely except being unable to distinguish between
houses numbered 2 and 4.

Assume the police knows hi−2 and hi−1, then they known that hi = hi−2 or hi =

2hi−1−hi−2. In the first case they will receive pi = pi−2 and in the latter case they will
receive pi as the biggest prime divisor of 2hi−1−hi−2. Assume that they are unable
to distinguish between these two cases, i.e., that pi = pi−2, which implies

pi−2 ∣ 2hi−1 − hi−2, i.e. pi−2 ∣ 2hi−1, i.e. pi−2 ∣ 2, i.e. pi−2 = 2

since hi−1 − hi−2 = 1 implies gcd (hi−1, hi−1) = 1. Moreover, since pi = pi−2 = 2 are
the biggest prime divisors of hi = 2hi−1 − hi−2 and hi−2 they must both be powers
of 2. However, the only powers of two with a difference of exactly 2 are 2 and 4.
Hence {hi−2,2hi−1 − hi−2} = {2,4}, i.e. hi−1 = 2+4

2 = 3.

Thus, either the police will with certainty be able to determine hi or hi−1 = 3, in
which case hi may equal either 2 or 4. To complete the inductive step we observe
that the police is always able to determine the parity of hj, since it changes every
day. Thus, in the future if the police knows that hj ∈ [2,4], then they can either
determine hj = 3 or hj ∈ {2,4}. However, the only way for the thief to leave the
interval [2,4] is to go to house number 5, in which case the police will be alerted by
receiving pj = 5, and they can again with certainty determine hj = 5 and hj−1 = 4
preserving our inductive hypothesis.
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To summarize, if the police knows both h0 and h1, then they can always determine
hi with certainty until hi−1 = 3. After this point they will with known the two last
hiding places of the thief if she leaves the interval [2,4], restoring the inductive
hypothesis, or otherwise, if she never leaves [2,4] be able to determine his position,
up to confusion about 2 and 4 using the parity of the day.

Now, to catch the thief in finite time, they may methodically try to guess all viable
pairs of (h0, h1), i.e h0, h1 ∈ N≥2 and h0 − h1 = 1, of which there are countably
many.

For each viable starting position, let us consider either the immediate Sunday or
the one after that, since each week has an odd amount of days, we are certain that
exactly one of these days gives us that the thief is hiding in an odd house (given
our assumption on his starting position). Thus, due to our inductive hypothesis,
we can precisely determine where the thief will be, and search this house.

If the thief is hiding in that house, the police wins, and if not, they will with
certainty know that their guess of starting positions was incorrect, and move onto
the next guess. By the above argument, each guess of initial starting positions
requires at most two weeks, meaning that the police will catch the thief in finite
time.

Remark: Note that if a week contained an even number of days then the police
would not be able to guarantee that they would be able to catch the thief, if the
thief moves between houses number 3 and {2,4}.
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Problem 9: Determine if there exists a triangle that can be cut into 101
congruent triangles.

Solution: Answer: Yes, there is.

Choose an arbitrary positive integer m and draw a height in the right triangle
with ratio of legs 1 ∶ m. This height cuts the triangle in two similar triangles
with similarity coefficient m. The largest of them can further be cut into m2

smaller equal triangles by splitting all sides in m equal parts and connecting corre-
sponding points with parallel lines. Thus a triangle can be split into m2 + 1 equal
triangles.

The figure shows this for m = 4, but in our problem we must take m = 10.
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Problem 10: On a circle, n ≥ 3 points are marked. Each marked point
is coloured red, green or blue. In one step, one can erase two neighbouring
marked points of different colours and mark a new point between the locations
of the erased points with the third colour. In a final state, all marked points
have the same colour which is called the colour of the final state. Find all n for
which there exists an initial state of n marked points with one missing colour,
from which one can reach a final state of any of the three colours by applying
a suitable sequence of steps.

Solution: Answer: All even numbers n greater than 2.

We show first that required initial states are impossible for odd n. Note that if
one colour is missing then the numbers of marked points of existing two colours
have different parities, i.e., the difference of these numbers is odd. Each step keeps
the parity of the difference of the numbers of marked points of these two colours
unchanged. Hence in every intermediate state and also in the final state, one of
these two colours is represented. Consequently, a final state of the third colour is
impossible.

For every even number n > 2, an initial state with 2 consecutive points marked
with one colour and n−2 points marked with another colour satisfies the conditions
of the problem. Indeed, if n > 4 then with two symmetric steps, one can reach a
similar state where the number of points marked with the more popular colour is
2 less. Hence it suffices to solve the case n = 4. In this case, making one step leads
to a state with 3 marked points, all with different colours. In order to obtain a
final state of any given colour, one can replace points of the other two colours with
a new point of the given colour. This completes the solution.

2nd Solution:

Definition: Call a configuration colourful, if the final state may have any of the
three colours.

The case of n being odd is excluded as in the first solution, so let n > 2 be even.
To construct colourful configurations, we consider linear configurations, i.e. one
where the points are placed on a line instead of a circle. There is only difference to
the circular situaton: We may not choose the two end points for the replacement
step. So it suffices to construct linear colourful configurations.
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We start by providing explicit examples for n = 4 and n = 6 (with the bold letters
being replaced):

RGRG→ BRG→ BB

RGRG→ RBG→ RR

RGRG→RBG→ GG

RGRRGR → BRRGR→ BRRB→ BRG→ BB

RGRRGR → RBRGR →RBBR →GBR → RR

RGRRGR → RBRGR →RBBR → GBR→ GG.

Next observe that the concatenation of several linear colourful configurations is
again colourful : Indeed, each part can be transformed into the desired colour
independently. So the building blocks for n = 4 and n = 6 can produce colourful
configurations of any even length.

Actually one can prove a lot more about colourful configurations:

Proposition: Denote the number of red resp. green resp. blue points in the
initial state by R resp. G resp. B. A circular configuration is colourful if and only
if

R ≡ G ≡ B (mod 2)

and it contains at least two colours.

Proof. We have already seen in the solution above that R−Gmod 2, G−B mod 2
and B −R mod 2 are invariants. Moreover it is obvious that we need at least two
colours to be able to do anything. So the conditions are necessary.

We prove that they are sufficient: For n = 3 the conditions require R = G = B = 1
and the configuration indeed colourful. We continue by induction for n > 3: As
n > 3, there is at least one colour with more than one point, so assume wlog.
R > 1. Having at least two colours, we can find a pair of two different colours, one
of which is red. Assume w.l.o.g. that the other is green. As a first step replace
these two points. The resulting configuration has R− 1 red, G− 1 green and B + 1
blue points, so it satisfies R−1 = G−1 = B+1 mod 2. Moreover due to R > 1 is has
at least one red and one blue point. So by induction the configuration is colourful,
and hence so was our original state.

This classification of colourful configuration, has some nice consequences:

Proposition: If a circular configuration is colourful, then so is any permutation
of its points.

Proof. Immediate.
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Problem 11: Let ABC be a triangle and let J be the centre of the A-excircle.
The reflection of J in BC is K. The points E and F are on BJ and CJ ,
respectively, such that ∠EAB = ∠CAF = 90○. Prove that ∠FKE +∠FJE =
180○.

Remark: The A-excircle is the circle that touches the side BC and the exten-
sions of AC and AB.

Solution:

A

B C

J

K

E

F

A

B C

J

X
K

E

F

Let JK intersect BC at X. We will prove a key claim:

Claim: BEK is similar to BAX.

Proof. Note that ∠EAB = 90○ = ∠KXB. Also, since BJ bisects ∠CBA, we
get ∠ABE = ∠JBX = ∠XBK. Hence EBA ∼ KBX. From that, we see that
the spiral similarity that sends the line segment EA to KX has centre B. So
the spiral similarity that sends the line segment EK to AX has centre B. Thus
BEK ∼ BAX.

In a similar manner, we get CFK is similar to CAX.

Now, using the similar triangles and the fact that K and J are symmetric in BC,
we have

∠FKE +∠FJE =∠FKE +∠BKC

= 360○ −∠EKB −∠CKF

= 360○ −∠AXB −∠CXA

= 360○ − 180○

= 180○

as desired.
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Problem 12: Let ABC be an acute triangle with AB > AC. The internal
angle bisector of ∠BAC intersects BC at D. Let O be the circumcentre of
ABC. Let AO intersect the segment BC at E. Let J be the incentre of AED.
Prove that if ∠ADO = 45○ then OJ = JD.

Solution: Let α =∠BAC, β =∠CBA, γ =∠ACB. We have

∠DJA = 90○ +
1

2
∠DEA = 90○ +

1

2
(∠EBA +∠BAE)

= 90○ +
1

2
(β + 90○ − γ) = 135○ +

β

2
−
γ

2

and

∠DOA = 180○ −∠OAD −∠ADO = 180○ − (∠OAC −∠DAC) − 45○

= 135○ − (90○ − β −
α

2
) = 135○ − (

1

2
(α + β + γ) − β −

α

2
)

= 135○ +
β

2
−
γ

2
.

Therefore, ∠DJA =∠DOA, hence quadrilateral ADJO is cyclic. Since AJ is the
bisector of ∠OAD, the arcs OJ and JD are equal. Hence OJ = JD.

A

B C

O

E D

J
45○
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Problem 13: Let ABC be an acute triangle with AB < AC and incentre I.
Let D be the projection of I onto BC. Let H be the orthocentre of ABC.
Given ∠IDH =∠CBA −∠ACB, prove that AH = 2 ⋅ ID.

Solution: Let H ′ be the reflection of H in BC. It is well-known (and easy to prove)
that H ′ lies on the circumcircle of ABC. Let O be the circumcentre of ABC. We
have

∠OH ′A =∠HAO =∠BAC −∠BAH −∠OAC

=∠BAC − 2 (90○ −∠CBA) =∠CBA −∠ACB

=∠IDH =∠H ′HD =∠DH ′A,

hence O, D, H ′ are collinear. Also note that ∠HAO = ∠H ′HD implies that
AO ∥HD.

Let M be the midpoint of BC. Let E be the reflection of D in M . We have

∠MOE =∠DOM =∠OH ′A =∠HAO.

Since OM ∥ AH, the above equality gives that A,O,E are collinear.

Let D′ be the reflection of D in I. It is well-known (and easy to prove) that D′ lies
on AE. Since AH ∥ OM and AD′ ∥HD, quadrilateral AHDD′ is a parallelogram.
Therefore AH =DD′ = 2 ⋅ ID.

A

B C
M

O

ED

H ′

H

D′

I
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Problem 14: Let ABC be a triangle with centroid G. Let D, E and F
be the circumcentres of BCG, CAG and ABG, respectively. Let X be the
intersection of the perpendiculars from E to AB and from F to AC. Prove
that DX bisects the segment EF .

Solution:

A

B C

G

F

E

D

X In all three solutions we will prove that the D-
median coincides with the perpendicular bisector
of the segment BC. Thus the solutions con- sist
of two parts, proving that X lies on the perpen-
dicular bisector of BC and proving that the mid-
point of EF lies on the perpendicular bisector of
BC.
The two parts may be completed independently,
and in the three solutions below we demonstrate
different approaches to both parts, though one
can create valid solutions combining either first
part with either second part.

Let ωB, ωC denote the circumcircles of triangles ABG and ACG respectively, and
the points Y and Z the second intersection of the line through B parallel to AC and
ωB and the second intersection of the line through C parallel to AB and ωC .

The lines BY and CZ thus intersects at A′, the reflection of A across the midpoint
of BC, and in particular on the A-median. Using Power of a Point from A′ with
respect to the circles ωB and ωC we obtain A′B ⋅ A′Y = A′A ⋅ A′G = A′C ⋅ A′E
implying from the converse of Power of a Point that the quadrilateral Y BCZ is
cyclic. The perpendicular bisector of BY is orthogonal to BY ∥ AC and passes
through F and thus X as well. Similarly, the perpendicular bisector of CZ passes
through Z. Hence X is the centre of circle (Y BCZ) and thus on the perpendicular
bisector of the line BC.

Let M and N denote the midpoints of BC and EF , respectively. To prove that
N lies on the perpendicular bisector of BC, let V and W denote the second
intersections of ωB and ωC with the line BC, respectively.

From Power of a Point from M with respect to ωB and ωC we obtain MV ⋅MB =
MG ⋅MA = WM ⋅ CM , i.e. MV = WM , so M is the midpoint of the segment
VW . Let E′, N ′, F ′ denote the projections of E, N and F onto BC respectively.
Since N is the midpoint of EF , N ′ will be the midpoint of E′F ′.

Moreover, from the fact that E and F are the centres of ωB and ωC we get that E′

and F ′ are the midpoints of BV and WC, and hence M is the midpoint E′F ′ as
well, implying N ′ =M and that N is on the perpendicular bisector of BC.
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2nd Solution: Let G′ denote the reflection of G across the midpoint of BC. We
begin by proving that triangles ABC and DFE are orthological, with orthology
centres G′ and X.

Observe that G′ is on the A-median and thus AG′ ⊥ EF . Furthermore, quadrilat-
eral BGCG′ is a parellelogram and hence BG′ ∥ CG ⊥ DE and CG′ ∥ BG ⊥ DF .
Hence, G′ is the first orthology centre of ABC and DFE.

Thus, by the property of orthologoical triangle, the second orthology centre must
exists, which is defined as the common intersection of the normal from D to BC,
E to AB and F to AC, i.e. the point X. Since D is on the perpendicular bisector
of BC, by virtue of being the circumcentre of triangle BGC, and XD ⊥ BC so
must point X.

Moreover, let O denote the circumcentre of triangle ABC. Then EO ⊥ AC ⊥
FX implies EO ∥ FX and FO ⊥ AB ⊥ EX implies FO ∥ EX, meaning that
quadrilateral FOEX is a parallelogram. Hence, the midpoint of EF lies on the
line XOD i.e. the perpendicular bisector of segment BC.

3rd Solution: Let M be the midpoint of BC. Let N be the intersection of EF
and DM . We claim that N is the midpoint of EF .

Namely, we have DEN ∼ CGM because corresponding pairs of sides are orthogo-
nal. Similarly, DFN ∼ BGM . Hence

EN

ND
=
GM

MC
=
GM

MB
=
FN

ND
,

proving that EN = FN , as desired.

Next, let X ′ resp. X ′′ denote the intersection of DN with the perpendicular
from E to AB resp. the perpendicular from F to AC. Just as above we have
ENX ′ ∼ AMB and FNX ′′ ∼ AMC, thus

X ′N
NE

=
BM

MA
=
CM

MA
=
X ′′N
NF

.

Since N is the midpoint of EF , we get X ′N =X ′′N , hence X ′ =X ′′ for orientation
reasons (note that by the above similarities, X ′ and X ′′ must lie on the same side
of EF ).

This shows that X =X ′ =X ′′ lies on DN .

Remark: That the medians of triangle DEF coincide with the perpendicular bi-
sectors of triangle ABC implies that the centroid of DEF coincides with the
circumcentre of ABC. It is possible to ask for this in the problem instead, but
then the problem becomes significantly easier, only requiring the second part of
the first solution.
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Problem 15: Let ω1 and ω2 be circles with no common points, such that
neither circle lies inside the other. Points M and N are chosen on the circles
ω1 and ω2, respectively, such that the tangent to the circle ω1 at M and the
tangent to the circle ω2 at N intersect at P and such that PMN is an isosceles
triangle with PM = PN . The circles ω1 and ω2 meet the segment MN again
at A and B, respectively. The line PA meets the circle ω1 again at C and the
line PB meets the circle ω2 again at D. Prove that ∠BCN =∠ADM .

Solution:

M

N

P

ω1

ω2

A

BC

D Since MPN is an isosceles triangle, we have
∠PMA = ∠PMN = ∠MNP = ∠BNP .
By tangent and chord theorem, ∠MCA =
∠PMA =∠BNP =∠BDN .
Since ∠MCP = ∠MNP , the quadrilat-
eral CMPN is cyclic. Analogously, from
∠PDN = ∠PMN , we get that NDMP is
cyclic. Since C and D both lie on the cir-
cumcircle of NPM , points P , N , M , C and
D are concyclic.

From inscribed angles subtending arcs with the same length, we get that ∠MDP =
∠MCP =∠MNP =∠PDN =∠PMN =∠PCN .

The power of P with respect to ω1 gives us that PM2 = PA ⋅ PC. The power of
P with respect to ω2 gives us that PN2 = PB ⋅ PD. Since PM = PN , the powers
of P with respect to ω1 and ω2 are equal (P lies on the radical axis). Hence,
PA ⋅ PC = PB ⋅ PD, which implies that ABDC is cyclic. From inscribed angles
subtending the arc AB, we get that ∠ACB =∠ADB.

Hence, ∠BCN =∠ACN −∠ACB =∠MDB −∠ADB =∠MDA.

Remark: There are several other ways to show that∠MDP =∠PCN , for example
by observing that CP bisects the angle ∠MCN (sinceMPNC is cyclic andMPN
is isosceles) and similarly DP bisects ∠MDN .

Another option is to apply inversion around P with radius PM = PN , noting that
it interchanges A and C (resp. B and D).

21



November 9 to 13, 2023

Problem 16: Prove that there exist nonconstant polynomials f and g with
integer coefficients such that, for infinitely many primes p, there are no integers
x and y with p ∣ f(x) − g(y).

Solution: We take f(x) = (x2 + 1)2 and g(y) = −(y2 + 1)2 and prove for all
p ≡ 3 (mod 4) that f(x) ≡ g(y) (mod p) has no solution. Famously, there are
infinitely many primes congruent to 3 modulo 4.

Recall the fact that if p ≡ 3 (mod 4) then the only solution to a2 + b2 ≡ 0 (mod p)
is a ≡ b ≡ 0 (mod p). Hence, for f(x) ≡ g(y) (mod p) to hold, we need

(x2 + 1)2 + (y2 + 1)2 ≡ 0 (mod p)

and thus

x2 + 1 ≡ y2 + 1 ≡ 0 (mod p),

which is impossible for p ≡ 3 (mod 4).

22



November 9 to 13, 2023

Problem 17: Let S(m) be the sum of the digits of the positive integer m.
Find all pairs (a, b) of positive integers such that S(ab+1) = ab.

Solution: Answer: (a, b) ∈ {(1, b) ∣ b ∈ Z+} ∪ {(3,2), (9,1)}.

Let k denote the number of digits of a. Then 10k−1 ≤ a < 10k and, there-
fore, 10(k−1)b ≤ ab and ab+1 < 10k(b+1). Of course, the digits are at most 9, so
S(ab+1) ≤ 9 ⋅ k(b + 1). We get

10(k−1)b ≤ ab = S(ab+1) ≤ 9 ⋅ k(b + 1), i.e. 10(k−1)b ≤ 9 ⋅ k(b + 1).

Let us consider the case where k ≥ 2. Then k ≤ 2(k − 1) and note that b+ 1 ≤ 2b as
b ≥ 1. Put (k − 1)b =∶ x, then k(b + 1) ≤ 4(k − 1)b = 4x. So 10x ≤ 36x. It is obvious
that the only solutions in nonnegative integers to this inequality are x = 0 and
x = 1. Indeed, for x ≥ 2, the left hand side grows faster. Therefore, either k = 1 or
k = 2 and b = 1.

Now we have only two cases left.

Case 1: b = 1 and k = 2. We are left with the equation S(a2) = a, for 10 ≤ a < 100.
Then a2 < 104, so a = S(a2) ≤ 9 ⋅ 4 = 36.

Moreover, taking into account the fact that the sum of digits does not change
the number modulo 9, a2 ≡ a (mod 9), i.e., a(a − 1) ≡ 0 (mod 9), therefore
a ≡ 0 (mod 9) or a ≡ 1 (mod 9). So now we are left only with numbers a ∈
{10,18,19,27,28,36}, which we can easily check by substitution and see that there
are no solutions.

Case 2: k = 1. In the same way, looking modulo 9, we get that ab+1 ≡ ab (mod 9)
implies ab(a − 1) ≡ 0 (mod 9). Therefore either a = 1 or a is divisible by 3. a = 1
is an obvious solution with all b ∈ Z+.

Otherwise, a ∈ {3,6,9}. But then ab+1 < 10b+1 and S(ab+1) ≤ 9(b + 1). Therefore,
3b ≤ ab = S(ab+1) ≤ 9(b + 1). But from 3b ≤ 9(b + 1), we can conclude b ≤ 3. Indeed,
for b ≥ 4, the left hand side increases faster. So we are left with a ∈ {3,6,9} and
b ≤ 3. We check all these cases to determine that only (a, b) = (3,2) or (a, b) = (9,1)
are solutions.
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Problem 18: Let p > 7 be a prime number and let A be a subset of
{0,1, . . . , p − 1} consisting of at least p−1

2 elements. Show that for each integer r,
there exist (not necessarily distinct) numbers a, b, c, d ∈ A such that

ab − cd ≡ r (mod p).

Solution: Let P be the set of residues modulo of possible products ab, for a, b ∈ A.
Clearly, we have ∣P ∣ ≥ p−1

2 , since we get ∣A∣ different products by fixing an arbitrary

0 ≠ a ∈ A and let run b through A. If ∣P ∣ ≥ p+1
2 , then ∣r + P ∣ ≥ p+1

2 , too. Hence,
∣P ∣ + ∣r + P ∣ ≥ p + 1 > p, so, by the Pigeonhole Principle, P and r + P must have
an element in common. In other words, there are p1, p2 with p1 ≡ r + p2 (mod p)
and hence p1 − p2 ≡ r (mod p), which gives a solution of the desired shape from
the definition of P . So the only remaining case is that of ∣P ∣ = ∣A∣ = p−1

2 .

Multiplying all elements of A with the same constant and reducing modulo p, if
necessary, we may assume w.l.o.g. that 1 ∈ A. Then A ⊆ P and hence A = P . This
means that the product of each two non-zero elements of A is an element of A,
too. Furthermore, for a fixed 0 ≠ a ∈ A the products ab all differ modulo p. (It
follows, that for every 0 ≠ a ∈ A there is a b ∈ A with ab ≡ 1 (mod p). Hence, the
non-zero elements of A form a group.) Thus, if we denote A⋆ ∶= A∖{0}, for a fixed
non-zero a ∈ A we have

∏
b∈A⋆

b ≡ ∏
b∈A⋆
(ab) = a∣A

⋆∣ ⋅ ∏
b∈A⋆

b (mod p).

Hence a∣A⋆∣ ≡ 1 (mod p).

If 0 ∈ A we have ∣A⋆∣ = p−3
2 . So ap−3 = a2∣A⋆∣ ≡ 1 (mod p). But from Fermat’s little

theorem we know ap−1 ≡ 1 (mod p), hence a2 ≡ 1 (mod p) and a ≡ ±1 (mod p).
We get p−3

2 = ∣A
⋆∣ ≤ 2. This is impossible for p > 7.

Consequently, 0 /∈ A and we have A⋆ = A.

We now use the well-known fact that for every prime p there exists a primitive
root, that is an integer 0 < q < p where the residues modulo p of the powers q1, q2,
. . . , qp−1 are (in some order) 1, 2, . . . , p − 1. That is, we can write every non-zero
element a ∈ A as qi with some 1 ≤ i ≤ p − 1.

If A is not the set of quadratic residues modulo p, that is the set of residues of q2⋅1,
q2⋅2, . . . , q2⋅

p−1
2 , then it would contain two elements with consequtive exponents,

say qi and qi+1. But then we have q(i+1)−i = q ∈ A and, therefore, all powers of q.
This contradicts ∣A∣ = p−1

2 < p−1. Hence A exactly the set of the quadratic residues
modulo p.
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Replacing r by r + p, if necessary, one may assume r to be odd. Then we can put
b ∶= d ∶= 1 ∈ A, as well as

a ≡ (
r + 1

2
)
2

(mod p) and c ≡ (
r − 1

2
)
2

(mod p).

Then a, c ∈ A, too. This yields

ad − bc ≡ a − c ≡ (
r + 1

2
)
2

− (
r − 1

2
)
2

≡ r (mod p),

as required.

Remark: This solution avoids using knowledge from basic group theory. But
clearly, with this, it could be stated in a shorter way.

Probably the result is also very far from being sharp and the p−1
2 can be replaced

by something even smaller. Determining the sharp bound (or even its order of
magnitude) here is most likely a very difficult problem.

2nd Solution: Since the problem only considers residue classes modulo p we reduce
every number modulo p, if necessary. That is instead of the set {0,1, . . . , p−1} we
are working with the group of residue classes modulo p, namely Z/pZ, so the sum,
product, and difference of such two residue classes always is such a residue class,
too.

Claim: Let A ⊆ Z/pZ a set with p−1
2 elements. Then for every residue class

r ∈ Z/pZ, with at most two exeptions, there exists a, b ∈ A with a − b = r.

Proof. Let r such an integer with no solutions for a−b = r and a, b ∈ A. Then r ≠ 0.
Let I ⊆ Z/pZ be the set of all i with ir ∈ A. Since r ≠ 0 we have ∣I ∣ = ∣A∣ = p−1

2 .
If i ∈ I we have i + 1 /∈ I. Otherwise r = (i + 1) − ir would be a difference of two
elements of A. But ∣Z/pZ ∖ I ∣ = p − p−1

2 = ∣I ∣ + 1. So there is exactly one i0 ∈ I with
i0 + 1, i0 + 2 /i nI and for all other i0 ≠ i ∈ I we have i + 1 /∈ I and i + 2 ∈ I. That is
I = {i0, i0+3, i0+5, . . . , i0+p−2} and all the residue classes ±3r, ±5r, . . . , ±(p−2)r
are expressable as difference of two elements of A. But this are all, with exeption
of ±r.

Now let r be an arbitrary residue class in Z/pZ. If there is an 0 ≠ a ∈ A with
such that a−1r can be expressed as b − d with b, d ∈ A, we have r = ab − ad. But
∣{a−1r ∣ a ∈ A,a ≠ 0}∣ ≥ ∣A∣ − 1 = p−3

2 and from the claim we know that at least
p − 2 residue classes are expressable as difference of two elements of A. So by
pidgeonhole principle such a solution is guranteed if p−3

2 + (p − 2) > p, namely for
all p with p > 7.
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Problem 19: Show that the sum of the digits of 22
2⋅2023

is greater than
2023.

Solution: We will prove the more general statement that, for every positive inte-
ger n, the sum of decimal digits of 22

2n
is greater than n.

Let m = 22n = 4n, so that we need to consider the digits of 2m. It will suffice to
prove that at least n of these digits are different from 0, since the last digit is at
least 2.

Let 0 = e0 < e1 < ⋅ ⋅ ⋅ < ek be the positions of non-zero digits, so that 2m = ∑
k
i=0 di ⋅10ei

with 1 ≤ di ≤ 9. Considering this number modulo 10ej , for some 0 < j ≤ k, the
residue ∑

j−1
i=0 di ⋅ 10ei is a multiple of 2ej , hence at least 2ej , but on the other hand

it is bounded by 10ej−1+1.

It follows that 2ej < 10ej−1+1 < 16ej−1+1, and hence ej < 4(ej−1 + 1). With e0 = 40 − 1
and ej ≤ 4(ej−1 + 1) − 1, it follows that ej ≤ 4j − 1, for all 0 ≤ j ≤ k. In particular,
ek ≤ 4k − 1 and hence

2m =
k

∑
i=0

di ⋅ 10
ei < 104

k

< 164
k

= 24⋅4
k

= 24
k+1

,

which yields 4n = m < 4k+1, i.e., n − 1 < k. In other words, 2m has k ≥ n non-zero
decimal digits, as claimed.
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Problem 20: Let n be a positive integer. A German set in an n × n square
grid is a set of n cells which contains exactly one cell in each row and column.
Given a labelling of the cells with the integers from 1 to n2 using each integer
exactly once, we say that an integer is a German product if it is the product
of the labels of the cells in a German set.

(a) Let n = 8. Determine whether there exists a labelling of an 8 × 8 grid
such that the following condition is fulfilled: The difference of any two
German products is always divisible by 65.

(b) Let n = 10. Determine whether there exists a labelling of a 10 × 10 grid
such that the following condition is fulfilled: The difference of any two
German products is always divisible by 101.

Solution:

(a) No, there is no such labelling.

On the contrary, we show that for every labelling there exist two German
products whose difference is not divisible by 65. Suppose that an 8×8 square
grid is labelled with the numbers 1, 2, . . . , 64 such that no number is used
twice.

We can construct a German product that is divisible by 13 by choosing
a German set that includes the cell with the label 13 and seven others in
different rows and columns, but otherwise arbitrarily.

We can construct a German product that is not divisible by 13 as follows.
Notice that only four labels are divisible by 13, namely 13, 26, 39, and 52.
These four labels are located in at most four rows; we denote the index set of
these rows R ⊆ [1,8]. Similarly, there are at least four columns that do not
contain any of these four labels; we denote the index set of these columns
C ⊆ [1,8]. Since R ≤ C it is possible to choose cells of a German set from
rows R using only columns from C. The remaining cells are chosen from the
remaining rows accordingly to the definition, but otherwise arbitrarily. The
resulting German product is not divisible by 13 since the German set avoids
the cells whose labels are divisible by 13.

The difference of the two German products is not divisible by 13, since one
German product is divisible by 13 whereas the other one is not. Hence the
difference is not divisible by 65.
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(b) Yes, there is such a labelling.

For k ∈ [0,99] we define ak = 2k (mod 101); in other words, ak is the re-
mainder of 2k when divided by 101. Note that ak ≠ 0 since no power of 2 is
divisible by 101. Hence 1 ≤ ak ≤ 100 for all k ∈ [0,99].

We label the cells of the square grid with the numbers ak as follows:

a0 a1 a2 ⋯ a9
a10 a11 a12 ⋯ a19
a20 a21 a22 ⋯ a29
⋮ ⋮ ⋮ ⋱ ⋮

a90 a91 a92 ⋯ a99

More precisely, if we label the rows and columns of the chessboard by
{0,1,2, . . . ,9}, then the cell with coordinates (i, j) gets the label a10i+j.

Note that a10i+j ≡ 210i+j (mod 101) and that 210i+j = (210)i ⋅ 2j. Hence for
this labelling any rook product is congruent to

(210)
0+1+2+...+9

⋅ 20+1+2+...+9

modulo 101. Hence the difference of any two German products is divisible
by 101 for this labelling.

It remains to show that the ak are pairwise different. (In more elaborate
language, we would say that 2 is a primitive root modulo 101.) To do this,
we denote by s the smallest positive integer such that 2s ≡ 1 (mod 101).
Using long division, we may write 100 = qs + r with non-negative integers q
and r such that 0 ≤ r ≤ s − 1. By virtue of Fermat’s little theorem we have

1 ≡ 2100 ≡ 2qs+r ≡ (2s)q ⋅ 2r ≡ 1q ⋅ 2r ≡ 2r (mod 101).

Since r < s and s is the smallest positive integer with 2s ≡ 1 (mod 101), we
must have r = 0. In other words, 100 is divisible by s; in other words, s is a
divisor of 100.

We claim that s = 100. If this was not the case, we would have s∣20 or
s∣50, which implies that 220 ≡ 1 (mod 101) or 250 ≡ 1 (mod 101). However
210 = 1024 ≡ 14 (mod 101), so that 220 ≡ 142 ≡ 196 ≡ −6 /≡ 1 (mod 101) and
250 ≡ (220)2 ⋅ 210 ≡ (−6)2 ⋅ 14 ≡ 504 ≡ −1 /≡ 1 (mod 101).

Now assume that k, ℓ ∈ [0,99] are positive integers with k > ℓ and ak = aℓ.
Then we have 2k ≡ 2ℓ (mod 101) and 0 ≡ 2k − 2ℓ ≡ 2ℓ ⋅ (2k−ℓ − 1) (mod 101).
Since 2ℓ and 101 are coprime, it follows that 2k−ℓ − 1 ≡ 0 (mod 101) and
2k−ℓ ≡ 1 (mod 101). This cannot be true, since k − ℓ ∈ [1,99], but s = 100 is
the smallest positive integer with 2s ≡ 1 (mod 101). Hence ak ≠ aℓ.

We conclude that the numbers ak with k ∈ [0,99] are a hundred pairwise
different numbers from the set [1,100], hence they are a permutation of the
set [1,100] as it was required.
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2nd Solution:
Definition: Let p be a prime. Consider an n × n square grid of elements ai,j ∈ F∗p
(for i, j = 1, . . . , n), which are not necessarily distinct. We call it rooky, if all its
German products are equal as elements in F∗p.

We will provide a classification of all rooky square grids. Of course, most of this is
not necessary when writing down a solution to the given problem, but it may still
be interesting. . .

Lemma: A square grid is rooky if and only if for all i, j, k, ℓ:

ai,j ⋅ ak,ℓ = ai,ℓ ⋅ ak,j. (1)

Proof. If we swap the rows of two cells in a German set and keep their columns, it
turns one valid German set into another. When comparing their German products,
we can ignore all n − 2 labels of cells that were not moved. The remaining values
are ai,j ⋅ ak,ℓ resp. ai,ℓ ⋅ ak,j for certain i, j, k, ℓ. This gives equality (1) for rooky
square grids.

Conversely assume that (1) holds. Then we have to compare two arbitrary German
products. But they can transformed into each other by a sequence of several swaps
of two cells. Due to (1) the German product does not change at any of these steps,
so the rook products of the original configurations are the same as well.

Lemma: A rooky square grid is uniquely determined by the elements of its first
row and first column.

Proof. Indeed the previous lemma implies that

ai,j ⋅ a1,1 = ai,1 ⋅ a1,j

which determines ai,j uniquely because a1,1 is a unit.

One can actually prove directly that the square grid obtained that way is rooky,
but it is simpler to continue directly to

Proposition: Let λi ∈ F∗p (i = 1, . . . , n) and µj ∈ F∗p (j = 1, . . . , n) arbitrary
elements. Then the square grid with

ai,j = λi ⋅ µj

is rooky. Moreover any rooky square grid can be obtained this way.

Proof. The square grid with ai,j = λi ⋅ µj is rooky, because any German product
has the value

∏
i

λi ⋅∏
j

µj.

29



November 9 to 13, 2023

Let us prove the converse: By the previous lemma, it suffices to find λis and µjs
that recreate the values of the first row and column. For this simply set λi = ai,1
and µj =

a1,j
a1,1

.

Proposition: For any prime p > n2, there exists a rooky square grid with only
distinct elements.

Proof. Choose any primitive root α ∈ F∗p. Then set λi = αi−1, µj = αn⋅(j−1) and
ai,j = λi ⋅ µj = αi−1+n⋅(j−1). This provides indeed a rooky square grid. The values in
the square are α0, α1, . . ., αn2−1. As we have chosen a primitive root, these are all
distinct.

For n = 10, p = 101 and α = 2, this reproduces exactly the construction given in
the previous solution.
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