Distickstoffoxid

Distickstoffoxid (N2O), auch Lachgas genannt, gehört zu den wichtigsten langlebigen Treibhausgas. Es besitzt eine Verweilzeit in der Atmosphäre von etwa 114 Jahren, und seine Treibhauswirkung pro Molekül ist 298 mal größer als die von Kohlendioxid.

Distickstoffoxid

Konzentration und Treibhauswirkung 

Konzentration von N2O


Abb. 1: Globale Konzentration von Lachgas (N2O) in ppb1

Wie Kohlendioxid kommt Distickstoffoxid in der unteren Atmosphäre aufgrund seiner langen Lebensdauer überall gut durchmischt vor. Eisbohrkerndaten der letzten 2000 Jahre zeigen, dass sich vor der Industrialisierung der N2O-Gehalt der Atmosphäre in den letzten Jahrtausenden, wahrscheinlich im gesamten Holozän, kaum verändert hat. Von 1750 bis 2005 dagegen ist die Konzentration von 270 ppb auf 319 ppb um 18% angestiegen. Die Wachstumsrate der atmosphärischen Konzentration lag in den letzten Jahrzehnten nahezu linear bei 0,8 ppb/Jahr. Der Strahlungsantrieb beträgt +0.16 W/m2, womit Distickstoffoxid nach CO2, CH4 und den FCKWs das viertwichtigste, rechnet man die FCKWs einzeln (mit CFC-12 als wichtigstem FCKW) sogar das drittwichtigste langlebige Treibhausgas ist.2 Die hohe Treibhauswirkung von N2O liegt zum einen an der langen atmosphärischen Verweilzeit, zum anderen aber hat das N2O-Molekül eine etwa 200mal größere Strahlungseffizienz als ein CO2-Molekül.

Der Strahlungsantrieb von Lachgas ist übrigens nicht allein von dessen Konzentration abhängig. Die Wellenlängenbereiche, in denen Lachgas Wärmestrahlung absorbiert, überschneiden sich zum Teil mit denen von Methan. Je höher also der Methangehalt in der Atmosphäre ist, desto geringer ist der Einfluss von Lachgas, da die entsprechenden Wellenlängen bereits von Methan absorbiert werden – die Treibhauswirkungen dieser beiden Stoffe dürfen also nicht einfach addiert werden. In Bezug auf Klimaschutzmaßnahmen bedeutet dies, dass von beiden Stoffen weniger emittiert werden muss, um einen großen Effekt zu erzielen; die Beschränkung eines der beiden Stoffe reicht nicht aus. Gleichzeitig zu seiner Treibhauswirkung ist Lachgas auch am Ozonabbau in der Stratosphäre beteiligt, da es sich zu NO und NO2 umwandelt. Beide Stoffe sind ozonzerstörend.

Quellen und Senken

Distickstoffoxid besitzt wie Kohlendioxid und Methan sowohl natürliche als auch anthropogene Quellen.

Die gesamten Emissionen werden für die 1990er Jahre auf 17,5 Tg pro Jahr geschätzt.3 Davon entfallen etwas mehr als die Hälfte auf natürliche Quellen wie den Ozean und Böden (insbesondere der tropischen Zone), der Rest auf anthropogene Quellen wie industrielle Produktion und landwirtschaftlich genutzte Böden. Die wichtigste Ursache der Zunahme an Lachgas im industriellen Zeitalter ist die Ausbreitung und verstärkte Düngung der landwirtschaftlichen Flächen, denn Stickstoff ist das wesentliche chemische Element in Düngemitteln. Die so gedüngten Pflanzen werden nach ihrem Absterben von Kleinstlebewesen zersetzt, wodurch N2O entsteht und aus dem Boden in die Atmosphäre entweicht. Eine Zunahme der Emissionen ist jedoch auch aus natürlich genutzten Böden zu verzeichnen. Die Ursache wird im vermehrten Eintrag von Stickstoff aus der Luft gesehen. Außerdem wird die N2O-Emission durch Temperatur und Bodenfeuchte geregelt und reagiert damit auch auf klimatische Veränderungen. Industrielle Quellen für N2O sind die Nylon-Produktion, die Salpetersäure-Produktion und die Verbrennung fossiler Rohstoffe.

Eine bedeutende natürliche Quelle sind küstennahe Ozeane, in denen aufsteigende Strömungen Nährstoffe an die Oberfläche transportieren. Auch auf Kontinentalschelfen und in Ästuaren und Flüssen ist dies meist der Fall. All diese Gebiete emittieren zwischen 0,3 und 6,6 Millionen Tonnen Stickstoff im Jahr, was 7-61% der ozeanischen Quellen ausmacht. Daran ist zu sehen, dass die Abschätzungen der Emissionen für einzelne Prozesse extrem unsicher sind. Dies gilt auch für die natürlichen Quellen an Land. Der größte Anteil davon ist den Tropen zuzuschreiben, was sich aus den Konzentrationsverteilungen in der Atmosphäre ableiten lässt. Die geographische Verteilung der Quellen ist jedoch uneinheitlich und unsicher. Es wird z. B. vermutet, dass ganze 10 % der totalen weltweiten Emissionen aus brasilianischen Waldböden stammen. Deforestation kann dazu beitragen, dass solche Emissionen anfangs noch steigen, auch wenn sie nach einiger Zeit wieder sinken (vorausgesetzt, dass dann keine Landwirtschaft betrieben wird, wie es jedoch oft der Fall ist).

Weiterhin ist die Bilanz der Quellen und Senken deshalb unsicher, weil die Austauschrate von Luftmassen zwischen Troposphäre und Stratosphäre (wodurch N2O-arme Luft heruntergemischt wird) schlecht bekannt ist. Da die leichteren Stickstoffisotope in der Stratosphäre schneller vernichtet werden, ist es immerhin möglich, aus Isotopenmessungen Rückschlüsse auf Quellen und Senken zu ziehen. Die Senken von Distickstoffoxid sind spärlich, es wird fast ausschließlich in der Stratosphäre durch Photolyse bzw. durch die Reaktion mit atomarem Sauerstoff abgebaut. Daraus erklärt sich auch die lange atmosphärische Verweilzeit (Lebensdauer).

Anmerkungen:
1. Eigene Darstellung nach IPCC (2013): Climate Change 2013, Working Group I: The Science of Climate Change, Figure 2.3
2. IPCC (2013): Climate Change 2013, Working Group I: The Science of Climate Change, 2.2.1.1.3
3. IPCC (2013): Climate Change 2013, Working Group I: The Science of Climate Change, 6.3.4

Autor: