Klimawandel und Klimafolgen

Sie lesen den Originaltext

Vielen Dank für Ihr Interesse an einer Übersetzung in leichte Sprache. Derzeit können wir Ihnen den Artikel leider nicht in leichter Sprache anbieten. Wir bemühen uns aber das Angebot zu erweitern.

Vielen Dank für Ihr Interesse an einer Übersetzung in Gebärden­sprache. Derzeit können wir Ihnen den Artikel leider nicht in Gebärdensprache anbieten. Wir bemühen uns aber das Angebot zu erweitern.

Auswirkungen von Klimaänderungen

Auswirkungen von Temperaturänderungen

Das Wachstum von Anbaupflanzen wird über die Photosynthese geregelt, die aus der Atmosphäre Kohlendioxid aufnimmt und daraus Biomasse aufbaut. Die Photosyntheseraten sind u.a. von den Temperaturverhältnisse der Atmosphäre abhängig. Erst bei Temperaturen über 0 °C beginnt das Wachstum und die Entwicklung der Pflanzen. Mit höherer Temperatur beschleunigt sich die Photosyntheserate bis zu einem Temperaturoptimum. Danach nimmt das Wachstum wieder ab, bis das Temperaturmaximum erreicht ist. Bei höheren Temperaturen wird das Enzymsystem zerstört und der Zelltod tritt ein. Der Photosynthese entgegen wirkt die Veratmung von Kohlendioxid, die ebenfalls von der Temperatur abhängig ist. Anders als die Photosynthese steigt die Veratmung mit der Temperatur stetig an. Die maximale Produktion bei Anbaupflanzen wird bei solchen Temperaturen erreicht, bei denen die Photosynthese möglichst hoch und die Veratmung möglichst gering ist. Dieser Bereich liegt bei den meisten Anbaupflanzen der mittleren Breiten wie Weizen, Kartoffeln, Mais u.a. zwischen 18 °C und 25 °C.1

© Eigene Darstellung nach Hörmann u.a. 1998


Abb. 1:
Zusammenhang zwischen Temperatur und Nettoprimärproduktion bei Pflanzen2

Die globale Erwärmung wird in den mittleren und höheren Breiten die Temperaturbereiche, in denen Anbau möglich ist, deutlich polwärts und in die Höhe ausweiten. So werden sich auf der Nordhalbkugel die Klimazone der gemäßigten Breiten signifikant nach Norden, d.h. nach Sibirien und Nordkanada hinein, ausweiten. Hinzu kommt, dass in mittleren und höheren Breiten bei genügend Niederschlag auch die Länge der Wachstumszeit deutlich zunehmen wird. Die Pflanzen beginnen im Frühjahr früher mit dem Blattaustrieb und stellen im Herbst später die Photosynthese ein. So werden sich die Gebiete der hohen Breiten mit einer Wachstumszeit von unter 120 Tagen im Jahr bis zum Ende des 21. Jahrhunderts um ca. 20 % verringern. Auf der anderen Seite nimmt die Wachstumszeit in den Subtropen wahrscheinlich ab, weil hier mit längeren Trockenperioden gerechnet werden muss.3

© Eigene Darstellung, grob angelehnt an Fischer et al. 2002


Abb. 2:
Verschiebung von Klimazonen und Wachstumszeiten nach dem A1Fl-Szenario4

Die Verlängerung der Wachstumszeit hat nicht für alle Pflanzen positive Effekte. Davon profitieren Pflanzen mit einer langen Wachstumszeit wie Mais, Hirse und Zuckerrüben. Bei vielen Getreidearten jedoch führt das beschleunigte Durchlaufen der Wachstumszeit zu einer Verminderung der Erträge, da die Kornfüllungsphase verkürzt wird. Für Wintergetreide kann eine Temperaturerhöhung in den Wintermonaten negative Folgen haben, da diese Anbaufrucht für eine optimale Entwicklung gewisse Minimumtemperaturen in der kalten Jahreszeit benötigt.5

Auswirkungen von Niederschlagsänderungen

Für das Wachstum von Pflanzen sind nicht nur bestimmte Temperaturbereiche grundlegend, sondern ebenso eine ausreichende Menge an Wasser. Diese kann direkt aus dem Niederschlag oder aus künstlicher Bewässerung bezogen werden, die aber über mittlere Zeiträume, außer bei Bezug aus fossilem Grundwasser, ebenfalls von den Niederschlägen abhängig ist. Während Pflanzen in einer relativ breiten Temperaturspanne wachsen, reagieren Pflanzen auf zu geringe Niederschlagsmengen sehr empfindlich. Dabei ist nicht nur der Niederschlag selbst von Bedeutung, sondern im Zusammenhang damit auch die Temperatur, der Boden und die Pflanzensorte. Bei höheren Temperaturen verdunstet der gefallene Niederschlag, sowohl vom Boden wie von der Pflanze, zu einem großen Teil und steht für die Stoffwechselprozesse nicht zur Verfügung. So erhöht eine Temperatursteigerung um 1 °C die Verdunstungsrate um 5%.

Ein kritischer Faktor ist auch die Wasserspeicherkapazität der Böden. Je nach Bodenbeschaffenheit kann der Niederschlag oberflächlich abfließen, schnell versickern oder weitgehend gespeichert und von den Wurzeln der Pflanze aufgenommen werden. Bei Sandböden z.B. versickert das Wasser schnell in die Tiefe und steht den Wurzeln der Pflanze nicht mehr zur Verfügung. Das wirkt sich unmittelbar auf die Photosynthese- und Ertragsleistung aus. Auch die Produktqualität kann davon betroffen sein. Und bei geringer Bodenfeuchte sind auch die Nährstoffe schlechter verfügbar. Von veränderten Niederschlagsbedingungen ist auch die Erneuerung des Grundwassers betroffen. Hinzu kommen geringere Abflussmengen der Flüsse, die durch den Klimawandel in mittleren Breiten im Sommer und Frühjahr (auch durch die Vorverlegung der Schneeschmelze) drohen.6

Einzelne Nutzpflanzen verbrauchen unterschiedlich viel Wasser, z.T. in Abhängigkeit von der Wachstumszeit. So verbraucht Wintergetreide weniger Wasser als Sommergetreide, Blattfrüchte aufgrund ihrer langen Wachstumszeit wiederum mehr als Getreide. Für das Pflanzenwachstum von großer Wichtigkeit ist es daher auch, wann der Niederschlag fällt, ob im Winter, wenn es für viele Pflanzen der mittleren und höheren Breiten zum Wachsen zu kalt ist, oder eher im Sommer, der Hauptwachstumszeit der gemäßigten und kalten Klimazonen.

© Eigene Darstellung nach IPCC 2007


Abb. 3:
Veränderung des Niederschlags in Europa nach dem Szenario A1B für die Jahre 2080-2099 im Verhältnis zu 1980 zu 1999 im Winter und Sommer. Dargestellt wird das Mittel der Ergebnisse von 21 Modellrechnungen.7

Allgemein wird damit gerechnet, dass durch die globale Erwärmung der Wasserkreislauf verstärkt wird. Das bedeutet einerseits höhere Niederschläge, andererseits aber auch höhere Verdunstungsraten. Die Zunahme von Niederschlag und Verdunstung wird dabei räumlich wie zeitlich nicht gleichmäßig verteilt sein. Ganzjährig werden die Niederschläge nur in den höheren Breiten und in einigen tropischen Gebieten zunehmen. In den mittleren Breiten ist eher davon auszugehen, dass die Niederschläge im Winter zu-, im Sommer aber abnehmen werden. Und in den Subtropen, etwa im mediterranen Raum, ist mit einer ganzjährigen Abnahme der Niederschläge zu rechnen, die allerdings im Sommer besonders ausgeprägt sein wird. Für die Landwirtschaft sind damit ernste Probleme vor allem in den Subtropen, aber auch in den mittleren Breiten verbunden. Die Wachstumszeit wird z.B. im Mittelmeerraum und den trockneren Gebieten Südosteuropas trotz steigender Temperaturen aufgrund größerer Trockenheit zurückgehen. Auch Nordostbrasilien, die Karibik, Südafrika und Mittelasien sind stark gefährdete Gebiete.

© Eigene Darstellung nach Hugo Ahlenius, UNEP/GRID-Arendal


Abb. 4:
Weltweite Steigerung des Wasserbedarfs für die landwirtschaftliche Produktion von Nahrungsmitteln 1960-2002 und Prognosen für die Erreichung. Das Ernährungsziel der FAO8 für 2015 ist eine Halbierung der Hungernden zwischen 1990 und 2015.9

Aufgrund der steigenden Bevölkerung wird der Bedarf an Wasser für die landwirtschaftliche Produktion in den kommenden Jahrzehnten noch einmal kräftig zunehmen. Das wird erst recht dann der Fall sein, wenn die von der Welternährungsorganisation FAO gesteckten Ziele, eine Halbierung der Unterernährten weltweit bis 2015 und eine Beseitigung der Armut bis 2030 bzw. 2050, erreicht werden sollen. Schon im 20. Jahrhundert ist der landwirtschaftliche Wasserbedarf zwischen 1960 und 2002 von 1000 km3 pro Jahr auf über 4000 km3 pro Jahr gestiegen. Bis 2030 wäre noch einmal eine Verdoppelung nötig. Gerade in den Regionen, in denen der Bedarf aufgrund der prekären Lage der Bevölkerung die größten Zunahmen erfordert, in Afrika südlich der Sahara und in Südasien, werden die Voraussetzungen zur Erreichung der gesteckten Ziele durch den Klimawandel eher verschlechtert.

Auswirkungen von Extremereignissen

Gravierender und unmittelbarer als allmählich sich ändernde Klimabedingungen, an die sich sowohl die Anbaupflanzen wie die Produktionsmethoden bis zu einem gewissen Grad anpassen können, wirken sich Extremereignisse wie Hitzewellen, Dürren oder Starkniederschläge auf die Landwirtschaft aus. Global haben vor allem lang anhaltende Dürren katastrophale Folgen für die Landwirtschaft gehabt wie etwa die Dust Bowl in den 1930er Jahren in den Great Plains von Nordamerika oder die Sahel-Dürre in den 1970er und 1980er Jahren in Westafrika. Die Dust Bowl hat mit ihren Staubstürmen zahlreiche Ernten vernichtet und die Farmer in den Ruin getrieben. Die Sahel-Dürre hat zu einer verheerenden Hungerkatastrophe geführt und hat zahlreiche Menschen zu Umweltflüchtlingen gemacht.

© NASA Earth Observatory


Abb. 5:
Waldbrände in Portugal im Sommer 200310

In Europa hat die Hitzewelle 2003, die vielfach als Vorbote künftiger Klimaverhältnisse gewertet wird, nicht nur zu Tausenden von Toten und heftigen Waldbränden geführt, sondern auch die Landwirtschaft stark beeinträchtigt. Neben den hohen Temperaturen im Juli und August wirkte sich auch aus, dass in vielen Regionen seit Februar des Jahres 2003 eine ausgeprägt Trockenheit herrschte. Trockenheit führt dazu, dass die Stomata schließen, um Wasserverlust zu vermeiden. Dadurch wird die Transpiration verhindert und damit die Abkühlung auf der Blattoberfläche, was die Atmungsrate ansteigen lässt. Auch die Pflanzenwurzeln reagieren empfindlich auf hohe Bodentemperaturen und Bodentrockenheit. Allerdings reagieren die landwirtschaftlichen Kulturen unterschiedlich auf Hitzestress.

Insgesamt beliefen sich die Schäden durch Dürren und Waldbrände in West- und Mitteleuropa auf ca. 13 Milliarden Euro.11 Besonders betroffen waren Frankreich und Italien mit je etwa 4 Milliarden Euro, aber auch die deutsche Landwirtschaft hatte einen Verlust von 1,5 Milliarden Euro zu verzeichnen. Besonders stark waren die Auswirkungen beim Viehfutterangebot mit Defiziten von z.B. 30% in Deutschland und 60% in Frankreich. Aber auch Weizen und Mais hatten erheblich unter der Dürre zu leiden.

In Deutschland betrugen die Ertragsverluste bis zu 20 % bei einzelnen Produkten.12 Besonders betroffen war die Grünlandwirtschaft, deren Erträge um 1/5 zurückgingen. Aber auch die Kartoffelernte verringerte sich um 16 %. Die Winterweizenerträge verringerten sich um 12 %, die Apfelernte um 5 %. Die Weinernte ging zwar mengenmäßig um 11 % zurück, jedoch erhöhte sich der Anteil an Qualitätsweinen um 13 %.

Neben Hitze und Dürre können sich auch Starkniederschläge schädlich auf die Landwirtschaft auswirken. Durch Hochwässer kann es zu Überflutungen von landwirtschaftlichen Flächen und zu Staunässe kommen. Außerdem können Nährstoffe aus dem Boden ausgewaschen werden und die Erosion zunehmen.

Anmerkungen:
1. Frank-Michael Chmielewski (2007): Folgen des Klimawandels für Land- und Forstwirtschaft, in: Wilfried Endlicher, Friedrich-Wilhelm Gerstengarbe: Der Klimawandel - Einblicke, Rückblicke und Ausblicke, S. 75-85; auch online
2. Eigene Darstellung nach Hörmann, G. und F. M. Chmielewski: Auswirkungen auf Landwirtschaft und Forstwirtschaft, in: J.L.Lozán u.a.(Hg.): Warnsignal Klima, Hamburg 1998
3. Fischer, G., M. Shah, and H. van Velthuizen (2002): Climate Change and Agricultural Vulnerability, Johannesburg, auch online
4. Eigene Darstellung, grob angelehnt an Fischer, G., M. Shah, and H. van Velthuizen (2002): Climate Change and Agricultural Vulnerability, Johannesburg, auch online
5. Marc Zebisch; Torsten Grothmann; Dagmar Schröter; Clemens Hasse; Uta Fritsch; Wolfgang Cramer (2005): Klimawandel in Deutschland - Vulnerabilität und Anpassungsstrategien klimasensitiver Systeme (Umweltbundesamt), auch online
6. Michaela Schaller und Hans-Joachim Weigel (2007): Analyse des Sachstands zu Auswirkungen von Klimaveränderungen auf die deutsche Landwirtschaft und Maßnahmen zur Anpassung, Landbauforschung, Sonderheft 316 - Online
7. Eigene Darstellung nach IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, Figure 11.5
8. Die FAO (Food and Agriculture Organization, dt. Ernährungs- und Landwirtschaftsorganisation) ist eine Organisation der UNO.
9. Eigene Darstellung nach Hugo Ahlenius, UNEP/GRID-Arendal: Water requirements for food production 1960-2050; ursprüngliche Lizenz: CC BY-NC
10. Quelle: NASA Earth Observatory
11. COPA-COGECA (2003): Bewertung der Auswirkungen der Hitzewelle und Dürre des Sommers 2003 für Land- und Forstwirtschaft. - Online
12. Michaela Schaller und Hans-Joachim Weigel (2007): Analyse des Sachstands zu Auswirkungen von Klimaveränderungen auf die deutsche Landwirtschaft und Maßnahmen zur Anpassung, Landbauforschung, Sonderheft 316 - Online

Autor: Dieter Kasang