Aerosole

Sie lesen den Originaltext

Vielen Dank für Ihr Interesse an einer Übersetzung in leichte Sprache. Derzeit können wir Ihnen den Artikel leider nicht in leichter Sprache anbieten. Wir bemühen uns aber das Angebot zu erweitern.

Vielen Dank für Ihr Interesse an einer Übersetzung in Gebärden­sprache. Derzeit können wir Ihnen den Artikel leider nicht in Gebärdensprache anbieten. Wir bemühen uns aber das Angebot zu erweitern.

Globale klimatische Wirkung von Aerosolen

Die globale Wirkung der Aerosole auf den Strahlungshaushalt ist sehr schwierig abzuschätzen. Möglicherweise wäre die bisherige Erwärmung ohne den Einfluss der Aerosole doppelt so hoch ausgefallen.

Welche Wirkung hat der Einfluss der Aerosole insgesamt auf das globale Klima? Nach Modellberechnungen erwärmt sich die Luft in Bodennähe um 0,5 bis 0,8 oC pro 1 W/m2 Strahlungsantrieb an der Obergrenze der Atmosphäre. Von den 2,4 W/m2, die nach IPCC-Schätzungen seit Beginn der Industrialisierung in der Mitte des 18. Jahrhunderts durch die langlebigen Treibhausgase CO2, CH4, N2O und FCKW verursacht wurden, werden 0,4 W/m2 im Ozean gespeichert. Die verbleibenden 2 W/m2 sollten eine Erwärmung von 1 bis 1,6 oC zur Folge haben. Die beobachtete Erwärmung seit 1860 beträgt jedoch nur 0,6 bis 0,7 oC. Für die Differenz ist wahrscheinlich die zunehmende Aerosolbelastung seit Beginn der Industrialisierung verantwortlich, die an der Obergrenze der Atmosphäre einen Strahlungsantrieb von ca. -1 W/m2 verursacht hat.1 Nach einer neueren Modellberechnungen des Hamburger Max-Planck-Instituts, die die Differenz zwischen 1860 und 1985 berücksichtigt, haben Aerosole eine mittlere globale Abkühlung von 0,9 oC seit vorindustrieller Zeit hervorgerufen. Die Erwärmung infolge der Treibhausgaszunahme beträgt hiernach 1,7 oC; die Nettoerwärmung liegt bei 0,6 oC. Dieser Wert ist kleiner, als eine Addition beider Einzelwerte ergäbe, was an Auswirkungen auf die Wolkenbildung und infolgedessen auf die Strahlung liegt.2

Es ist damit zu rechnen, dass in den nächsten Jahrzehnten nicht nur die Industriestaaten, sondern auch die Schwellenländer versuchen werden, die Aerosolemissionen weiter zu reduzieren. Man muss daher von einem doppelten Erwärmungseffekt ausgehen, zum einen durch den Anstieg der Treibhausgaskonzentration und zum anderen durch die Reduzierung der Aerosolemissionen. Nach Modellrechnungen, die von einer maximal möglichen Aerosolreduzierung bis 2030 ausgehen, würde allein durch die geringere Konzentration von Aerosolen in der Atmosphäre die globale Mitteltemperatur um fast 1 °C ansteigen. Hinzu käme noch eine Erwärmung von 1,2 °C durch die höhere Konzentration von Kohlendioxid und anderen Treibhausgasen, so dass es bis 2030 zu einer gesamten Erwärmung um 2,2 °C kommen könnte.2a

© Eigene Darstellung nach Feichter 2004


Abb. 1: Veränderung der mittleren bodennahen Temperatur im Vergleich zum vorindustriellen Wert durch anthropogene Aerosole nach einer Modellrechnung des Hamburger Max-Planck-Instituts. Berücksichtigt ist der direkte und der indirekte Aerosol-Effekt.3

Abb.1 zeigt, dass der Temperatureffekt durch anthropogene Aerosole überall auf dem Globus negative Werte aufweist. In Abhängigkeit von der räumlichen Verteilung der Aerosole ist ihre klimatische Wirkung am stärksten auf der Nordhalbkugel und größer über den Kontinenten als über den Ozeanen. Die deutlichen Effekte über Sibirien und den Polargebieten sind durch den Schnee-Albedo-Feedback verursacht: Die Abkühlung durch Aerosole vergrößert die Schnee- und Eisbedeckung, wodurch mehr Sonnenstrahlen zurückgestreut werden, was wiederum eine weitere Abkühlung zur Folge hat. In den wenig verschmutzten Gebieten über den südlichen Ozeanen ist die Aerosolwirkung am geringsten. In allen geographischen Breiten über Land übertrifft der Erwärmungseffekt durch anthropogene Treibhausgase in den letzten 150 Jahren allerdings die Wirkung der Aerosole eindeutig (vgl. Abb. 2).

© Eigene Darstellung nach Feichter 2004


Abb. 2: Modellsimulation der zonalen Temperaturdifferenz zwischen dem vorindustriellen Wert (0 °C) und der Gegenwart durch den Effekt von Treibhausgasen allein (obere Kurve), Aerosole allein (untere Kurve) und durch anthropogene Treibhausgase und Aerosole (mittlere Kurve) über Land4

Die Erhöhung der bodennahen globalen Mitteltemperatur im 20. Jahrhundert in zwei Phasen (bis in die 1940er Jahre und seit den 1970er Jahren) zeigt allerdings, dass auch andere Faktoren als anthropogene Aerosole und Treibhausgase wie z.B. Vulkane und die Solarvariabilität eine Rolle spielen. Für die Temperaturentwicklung der letzten Jahrzehnte ist jedoch die Wirkung der Treibhausgase einerseits und der Aerosole andererseits ausschlaggebend. Im Hinblick auf die natürlichen Einflussfaktoren zeigt sich ein erstaunliches Paradox. Einerseits hat die globale Temperatur deutlich zugenommen, andererseits zeigt sich an zahlreichen Messstationen weltweit eine Abnahme der Sonneneinstrahlung am Boden von den 1960er zu den 1980er Jahren um etwa 7 W/m2 oder 4% im globalen Mittel. Die Erklärung wird in der Zunahme der anthropogenen Treibhausgase und der damit verbundenen Zunahme an Wasserdampf auf der einen und der anthropogenen Aerosole und der damit verbundenen Zunahme der Wolkenbedeckung auf der anderen Seite gesehen.5 Aerosole schwächen die Sonneneinstrahlung sowohl direkt in wolkenfreier Atmosphäre wie indirekt durch ihre Veränderung der Wolkenbedeckung. Hinzu kommt, dass Aerosole durch den starken Abkühlungseffekt am Boden und die teilweise Erwärmung in der mittleren Troposphäre das vertikale Temperaturprofil verändern. Hieraus können sich erhebliche Folgen für den hydrologischen Zyklus ergeben.

© Eigene Darstellung nach Stanhill2001


Abb. 3: Die globale Sonneneinstrahlung am Boden  1958 und 1992 nach der geographischen Breite6

Allgemein wird angenommen, dass der hydrologische Zyklus infolge der globalen Erwärmung durch die Zunahme der Treibhausgase intensiviert wird.7 Fast alle Klimamodelle zeigen, dass eine Erwärmung an der Erdoberfläche um 1 oC durch die Steigerung der Verdunstung besonders über den Ozeanen eine Erhöhung der Niederschläge um 2-3% zur Folge hat. Die Verdunstung nimmt vor allem zu, weil die Wasserdampfkapazität einer wärmeren Atmosphäre erhöht ist. Beobachtungen über die letzten 50 Jahre bestätigen diesen Befund der Modelle jedoch nur begrenzt und zeigen in einigen Gebieten eine Abnahme der potentiellen Verdunstung. Als wahrscheinliche Erklärung gilt eine Reduzierung der Sonneneinstrahlung durch mehr Wolken und/oder Aerosole.8 Modellrechnungen bestätigen solche Zusammenhänge:9 Die Zunahme von Wolken und Aerosolen in den letzten Jahrzehnten führt im Modell zu einer Reduktion der Sonneneinstrahlung am Boden um 5,2 W/m2 über Land und 3,8 W/m2 global.

Aerosole wirken dem Einfluss der Treibhausgase auf Verdunstung und Niederschlag entgegen. Erstens verzögern sie direkt den Niederschlag durch ihren Einfluss auf die Tröpfchengröße (s.o.). Zweitens verringert die durch Aerosole verursachte Verminderung der Einstrahlung die Verdunstung und in der Folge auch den Niederschlag. Und drittens sorgt die Erwärmung der unteren Atmosphäre durch absorbierende Aerosole (vor allem durch Ruß) für eine Verringerung der Temperaturabnahme mit der Höhe und damit für eine Schwächung des Auftriebs warmer wasserdampfhaltiger Luft, was wiederum die Niederschlagsneigung schwächt. Die Erwärmung der unteren Atmosphäre durch Ruß-Aerosole sorgt auch direkt für eine abnehmende Bewölkung und eine Reduzierung von Niederschlägen.10 Quantitativ können diese Effekte durch Beobachtung bisher nicht bestätigt werden. Modellrechnungen zeigen jedoch sehr deutliche Effekte.

Nach neueren Modellrechnungen11 dürfte die Veränderung bei Verdunstung und Niederschlag durch Aerosole trotz des geringeren Temperatureinflusses höher als durch Treibhausgase sein. Der hydrologische Zyklus reagiert hiernach auf Veränderungen im Aerosolgehalt dreimal stärker als auf Veränderungen in der Konzentration von Treibhausgasen. Während die globale Erwärmung den hydrologischen Zyklus verstärkt, ist der Aerosoleffekt auf die Einstrahlung am Boden stark genug, um diesen Effekt umzudrehen. Die Verringerung der Niederschläge ist besonders groß über aerosolbelasteten Gebieten. Da der Niederschlag die Hauptursache für die Entfernung von Aerosolen aus der Atmosphäre ist, gibt es einen positiven Feedback.: Die Verringerung der Niederschläge sorgt für eine Erhöhung der Aerosolkonzentration usw. Außerdem stabilisiert die Abkühlung des Bodens durch Aerosole die untere Atmosphärenschicht und unterdrückt die Konvektion. Trotz einer allgemeinen Erwärmung (hier übertrifft der Treibhauseffekt den Aerosoleffekt) nimmt der Niederschlag in manchen Breiten ab, besonders über den Kontinenten in niederen Breiten.

Der anthropogene Aerosoleffekt hängt stark vom Zustand des Klimas ab. Bei gleicher Emission ist die Aerosolkonzentration in einem Treibhausklima niedriger als ohne Treibhauserwärmung. Durch die Treibhausgaserwärmung wird die Aerosolmenge in der Atmosphäre reduziert. Grund ist die kürzere Verweilzeit von Aerosolen, die durch die Verstärkung von Niederschlägen bedingt ist. In einem kühleren Klima ist die Schwächung des hydrologischen Zyklus mit einer längeren atmosphärischen Verweilzeit von Aerosolpartikeln und folglich einer größeren räumlichen Verbreitung verbunden. Ebenso besitzen Wolken eine längere Verweilzeit durch den zweiten indirekten Aerosoleffekt. Pro oC Erwärmung nimmt die simulierte Aerosolmenge um 17% ab. Daraus folgt, dass eine weitere Erwärmung durch Treibhausgase die Konzentration von Aerosolen weiter reduzieren könnte, auch wenn die Emissionen gleich bleiben.

Anmerkungen:
1. Ramanathan, V., P.J. Crutzen, J.T. Kiehl, and D. Rosenfeld (2001): Aerosols, Climate, and the Hydrological Cycle, Science 294, 2119-2124
2. Feichter,J., E. Roeckner, U. Lohmann, and B. Liepert (2004): Nonlinear Aspects of the Climate Response to Greenhouse Gas and Aerosol Forcing, Journal of Climate 17, 2384-2398
2a. Kloster, S. et al. (2010): A GCM study of future climate response to aerosol pollution reductions, Climate Dynamics 34, 1177-1194
3. verändert nach Feichter,J., E. Roeckner, U. Lohmann, and B. Liepert (2004): Nonlinear Aspects of the Climate Response to Greenhouse Gas and Aerosol Forcing, Journal of Climate 17, 2384-2398
4. verändert nach Feichter,J., E. Roeckner, U. Lohmann, and B. Liepert (2004): Nonlinear Aspects of the Climate Response to Greenhouse Gas and Aerosol Forcing, Journal of Climate 17, 2384-2398
5. Liepert, B.G., J. Feichter, U. Lohmann, E. Roeckner: Can aerosols spin down the water cycle in a warmer and moister world?, Geophys. Res. Lett., 31, No. 6, doi: L0620710.1029/2003GL019060
6. nach Stanhill, G., S. Cohen (2001): Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences, Agricultural and Forest Meteorology 107, 255-278
7. Trenberth, K.E., A. Dai, R.M. Rasmussen, and D.B. Parsons (2003): The Changing Character of Precipitation, Bulletin of the American Meteorological Society 84, 1205-1217
8. Roderick, M. L., and D. Farquhar (2002), The cause of decreased pan evaporation over the past 50 years, Science 298, 1410-1411.
9. Liepert, B.G., J. Feichter, U. Lohmann, E. Roeckner: Can aerosols spin down the water cycle in a warmer and moister world? Geophys. Res. Lett., 31, No. 6, doi: L0620710.1029/2003GL019060
10. Kaufman, Y.J., D. Tanré, and O. Boucher (2002): A satellite view of aerosols in the climate system, Nature 419, 215-223
11. hierzu und zu den folgenden Ausführungen vgl. Feichter,J., E. Roeckner, U. Lohmann, and B. Liepert (2004): Nonlinear Aspects of the Climate Response to Greenhouse Gas and Aerosol Forcing, Journal of Climate 17, 2384-2398